Figure 52. General Land Use and NPDES Permits in the Upper Gila Watershed #### **Upper Gila Watershed Assessment Discussion** #### **Statistical Summary of Surface Water Assessments** Assessments – For the 2002 assessment, 320 stream miles and 153 lake acres were assessed. This assessment reflects data collected in 2000 when one of two focus watersheds. Water quality assessment information for the Upper Gila Watershed is summarized in the following tables and illustrated on Figure 53. Table 27. Assessments in the Upper Gila Watershed - 2002 | | STREAMS | | LAKES | | |-------------------|---------|--------------------|-------|--------------------| | | miles | number of segments | acres | number of
lakes | | ATTAINING | 252 | 17 | 33 | 2 | | INCONCLUSIVE | 49 | 3 | 0 | 0 | | IMPAIRED | 19 | 2 | 0 | 0 | | NOT ATTAINING | 0 | 0 | 120 | 1 | | TOTAL
ASSESSED | 320 | 22 | 153 | 3 | | PERENNIAL | | STREAMS | | LAKES | | |-------------------------------|----------|---------|--------------------|-------|-----------------| | SURFACE
WATERS
ASSESSED | | miles | number of segments | acres | number of lakes | | | Assessed | 320 | 22 | 153 | 3 | ^{*} Note that streams with significant perennial stretches within the reach assessed were included in the perennial milage although part of the reach may have ephemeral or intermittent flow. Inconclusive Assessments – Surface waters with some monitoring data, but insufficient data to determine if a designated use is attaining or impaired, were added to the new Planning List. By the end of the next watershed monitoring cycle (scheduled in 2005), ADEQ expects to monitor most of these reaches so that all designated uses can be assessed during the following assessment cycle. Other lakes and streams which lack monitoring data will also be monitored depending on resources and priorities. ADEQ will be working with US Geological Survey and the Arizona Game and Fish Department, so that their future monitoring efforts will better support Arizona's surface water assessments. Major Stressors – When a surface water is listed as impaired or not attaining a designated use, the pollutants or suspected pollutants causing the impairment are identified. In this watershed, two reaches were impaired by turbidity. A nutrient TMDL was completed and approved by EPA for Luna Lake in 2000. Currently, ADEQ is scheduling monitoring to evaluate the effectiveness of TMDL implementation strategies. Figure 53. Upper Gila Watershed Surface Water Assessments – 2002 | STREAM NAME
SEGMENT | AGENCY AND PROGRAM
SITE DESCRIPTION | YEAR SAMPLED
NUMBER AND | | STAI | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | |---|--|---|--------------------------|---------------------------------|-------------------------------|-----------------------------------|------------------------------|--| | WATERBODY ID DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | STREAM MONITORING | DATA | | | | | | | | | Ash Creek
headwaters-Gila River
AZ15040005-040
A&Wc, FC, FBC, AgL | ADEQ Fixed Station Network
@ Forest Road #307
UGA1H008.62
100630 | 2000 - 3 suites | Dissolved oxygen mg/L | 7.0
90% Saturation
(A&Ww) | 6.8-8.2
68-108% | 1 of 3 | | | | | Summary Row A&Wc Inconclusive FC Attaining FBC Attaining AgL Attaining | 2000
3 sampling events | Dissolved oxygen
mg/L | 90% Saturation
(A&Ww) | 6.6-8-2
68-108% | 1 of 3 | Inconclusive | ADEQ collect 3 samples in 2000. Reach assessed as "attaining some uses." Add to Ptanning List due to one low dissolved oxygén. | | Blue River
New Mexico -KP Creek
AZ15040004-026
A&Wc, FC, FBC, AgI, AgL | ADEQ Biocriteria & Fixed Statlon
Below Jackson Box (upper)
UGBLR033.04
100419 | 1996 - 1 suite
2000 - 3 suites, 1 field | ОК | | | | | | | | Summary Row A&Wc Attaining FC Attaining FBC Attaining Agl Attaining Agl Attaining | 1998-2000
4 sampling events | OK | | | | Attaining | ADEQ collected 4 samples in 1996-2000.
Reach assessed as "attaining all uses." | | Blue River
KP Creek-San Francisco River
AZ15040004-025 | ADEQ Fixed Station Network @ Juan Miller Road UGBLR005.68 | 1996 - 6 suites
1999 - 5 suites
2000 - 4 suites | Dissolved oxygen mg/L | 7.0 (A&Wc)
90% Saturation | 6.3-9.6
88-115% | 1 of 14 | | | | A&Wc, FC, FBC, AgI, AgL | 100398 | 2000 - 4 Suites | Turbidity
NTU | 10 (A&Wc) | <1-22 | 2 of 14 | | | | | ADEQ Biocriteria program
Above Fritz Ranch (lower)
UGBLR008.07
100420 | 1996 - 1 suite | ОК | | | | | | | | ADEQ Fixed Station Network
Below K P Creek
UGBLR021.95
100835 | 2000 - 4 suites | OK | | | | | | | | AGFD @ Stacey Crossing UGBLR | 1997 - 1 suite | ОК | | | | | | | | Summary Row A&Wc Attaining | 1996-2000
21 samples | Dissolved oxygen mg/L | 7.0 (A&Wc)
90% Saturation | 6.3-9.6
88-115% | 1 of 18 | Attaining | ADEQ collected 20 samples at three sites and AGFD collected one sample in 1996-2000. Reach assessed as "attaining all | | FC Attain
FBC Attain
Agi Attain | FBC Attaining | 17 sampling events | Turbidity
NTU | 10 (A&Wc) | <1-22 | 2 of 16 | Attaining | uses." | | STREAM NAME | AGENCY AND PROGRAM | YEAR SAMPLED
NUMBER AND | - | STA | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | |--|--|---|--------------------|---------------------------------|-------------------------------|-----------------------------------|------------------------------|---| | SEGMENT
WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | Bonita Creek
Park Creek-Gila River
AZ15040005-030
A&Ww, FC, FBC, DWS, AgL | ADEQ Fixed Station and TMDL
Above Gila River
UGBON000.20
100185 | 1997 - 1 suite, 5 metals
1998 - 1 suite
2000 - 4 suites | ОК | | | | | | | Unique Waters | ADEQ Stream Ecosystem Mon.
Below infiltration gallery
UGBON003.2
100186 | 1997 - 1 suite | ОК | | | | | | | | ADEQ Biocriteria program
Above Gila River
UGBON004.82
100421 | 1997 - 1 suite | ОК | | | | | | | | ADEQ Stream Ecosystem Mon.
Below Lines Canyon
UGBON007.9
100187 | 1997 - 1 suite | ОК | | | | | | | | ADEQ Fixed Station & Stream
Ecosystem Monitoring
Below Indian lands
UGBON011.31
100188 | 1997 - 1 suite
2000 - 4 suites | ОК | | | | | | | | Summary Row A&Ww Attaining FC Attaining FBC Attaining DWS Attaining AgL Attaining | 1997-2000
19 samples
6 sampling events | ок | | | | Attaining | ADEQ collected a total of 19 samples at 5 sites in 1997-2000. Reach assessed as "attaining all uses." | | Campbell Blue Creek
headwaters-Blue River
AZ15040004-028
A&Wc, FC, FBC, AgL | ADEQ Biocriteria & Fixed Station
Above K E Canyon
UGCMB002.16
100522 | 1996 - 1 suite
2000 - 4 suites | ОК | | | | - | | | | Summary Row A&Wc Attaining FC Attaining FBC Attaining AgL Attaining | 1996-2000
5 sampling events | ок | | | | Attaining | ADEQ collected 5 samples in 1996-2000.
Reach assessed as "attaining all uses." | | Cave Creek
headwaters-USFS boundary
AZ15040006-852A
A&Wc, FC, FBC, Agl, Agl.
Unique Waters | ADEQ
Unique Waters & Fixed Station
Below ranger station
UGCAV006.55
100937 | 1997 - 1 suite
1998 - 1 suite
1999 - 1 suite
2000 - 3 suites | Turbidity
NTU | (A&Wc) | <1-84 | 1 of 6 | | Exceedance occurred during very high flow (normally <1 cfs, flow at 65 cfs). Not include in final assessment. | | | TABLI | E 28. UPPER GILA | WATEKSHED - | MONITORING DA | ATA - 2002 | ASSESSMEN | | | |--|---|---|--------------------|---------------------------------|--|-----------------------------------|------------------------------|---| | STREAM NAME
SEGMENT | AGENCY AND PROGRAM SITE DESCRIPTION | YEAR SAMPLED
NUMBER AND | | STA | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | | WATERBODY ID
DESIGNATED USES | SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | | ADEQ
Unique Waters & Fixed Station
Below North Fork Cave Creek
UGCAV007.64
100933 | 1997 - 1 suite
1999 - 1 suite
2000 - 4 suites | Turbidity
NTU | 10
(A&Wc) | <1-15 | 1 of 6 | | Exceedance occurred during very high flow (flow at 48 cfs while normally <1 cfs). | | | ADEQ Unique Waters Program
Above SW Research Station
UGCAV008.49
11106 | 1997 - 1 suite
1998 - 1 suite
1999 - 1 suite | ок | | 20 36 Jan 19 19 19 19 19 19 19 19 19 19 19 19 19
 | | | | | ADEQ Unique Waters Program
Above septic systems for
summer homes
UGCAV008.92
101107 | 1997 - 1 suite
1999 - 1 suite | ок | | | | | | | | ADEQ Unique Waters Program
Above Herb Martyr Campground
UGCAV016.3
101108 | 1997 - 1 suite
1998 - 1 suite
1999 - 1 suite | ок . | | | | | | | | Summary Row A&Wc Attaining FC Attaining FBC Attaining Agi Attaining AgL Attaining UW Attaining | 1997-2000
20 samplés
7 sampling events | Turbidity
NTU | 10
(A&Wc) | <1-64 | 2 of 20 | Attaining | ADEQ collected 20 samples at 5 sites in 1997-2000. Reach assessed as "attaining all uses." | | Cave Creek
USFS boundary-New Mexico
AZ15040006-852B
A&Wc, FC, FBC, Agl, AgL | ADEQ Unique Waters Program
Above South Fork of Cave Creek
UGCAV007.70
101105 | 1997 - 1 suite
1998 - 1 suite
1999 - 1 suite | ок | | | | | | | | ADE'Q Unique Waters Program
Belo w South Fork of Cave Creek
OSCAV007.46
11104 | 1997 - 1 suite
1998 - 1 suite
1998 - 1 suite | ок | | | | | | | | Summary Row A&We: Attaining FC Attaining FBC Attaining Agl Attaining Agl Attaining | 1997-1999
6 samples
3 sampling events | OK | | | | Attaining | ADEQ collected 6 samples at 2 sites in
1997-1999. Reach assessed as "attaining
all uses." | | | IABLI | E 28. UPPER GILA | WATERSHED - | MONITORING DA | ATA - 2002 | A33E33MEN | | | |--|--|---|-----------------------|---------------------------------|-------------------------------|-----------------------------------|------------------------------|--| | STREAM NAME
SEGMENT | AGENCY AND PROGRAM SITE DESCRIPTION | YEAR SAMPLED
NUMBER AND | | STAI | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | | WATERBODY ID DESIGNATED USES | SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | Coleman Creek
headwaters-Campbell Blue
AZ15040004-040
A&Wc, FC, FBC, AgL | ADEQ Biocriterla program
Below Turkey Creek
UGCOL002.49
100523 | 1996 - 1 suite | ок | | | | | | | | Summary Row | 1999
1 sampling events | | | | | Not assessed | insufficient data to assess. | | Eagle Creek
headwaters-Willow Creek
AZ15040005-026
A&Wc, FC, FBC, DWS, AgI, AgL | ADEQ Biocriteria & Fixed Station
Above Honeymoon Campground
UGEAG035.99
100535 | 1996 - 1 suite
2000 - 4 suites | Dissolved oxygen mg/L | 7.0
90% saturation
(A&Wc) | 5.8-8.2
(77-98%) | 1 of 5 | | Staff documented that low dissolved oxygen was due to ground water upwelling that is naturally low in dissolved oxygen; therefore, not considered in the final assessment. | | | Summary Row A&Wc Attaining FC Attaining FBC Attaining DWS Attaining Agl Attaining Agl Attaining | 1998-2000
5 sampling events | OK | | | | Attaining | ADEQ collected 5 samples in 1998-2000.
Reach assessed as "attaining all uses." | | Eagle Creek
Willow Creek-Sheep Wash
AZ15040005-027
A&Wc, FC, FBC, DWS, AgI, AgL | ADEQ Biocriteria & Fixed Station
Below Sheep Wash Crossing
UGEAG023.34
100536 | 2000 - 4 suites | Turbidity
NTU | 10
(A&Wc) | 4-13 | 1 of 4 | | | | | Summary Row A&Wc Inconclusive FC Attaining FBC Attaining DWS Attaining Agi Attaining AgL Attaining | 2000
4 šámples | Turbidity
NTU | (ASWC) | 4-13 | 1 of 4 | Inconclusive | ADEQ collected four samples in 2000.
Reach assessed as "attaining some uses
Add to Planning List due to turbidity
exceedance. | | Eagle Creek
Sheep Wash-Gila River
AZ15040005-025
A&Wc, FC, FBC, DWS, AgI, AgL | ADEQ TMDL Program
At confluence with Gila River
UGEAG000.05
100817 | 1997 - 5 suites (1 suite,
and 4 field, copper,
zinc),
1998 - 1 suite | Dissolved oxygen mg/L | 7.0
90% saturation
(A&Wc) | 5.6-10.0 | 1 of 6 | | Staff documented that low dissolved oxygen was due to ground water upwelling that is naturally low in dissolved oxygen; therefore, not considered in the final assessment. | | | | | Turbidity
NTU | 10
(A&Wc) | 1-233 | 2 of 6 | | | | | ADEQ Fixed Station Network
Below Gold Gulch @More not
UGEAG006.05
100806 | 2000 - 4 suites | Turbidiţy
N'TU | (A&Vc) | <1-26 | 1 of 4 | | | | | Summary Row A&Wc inconclusive FC Attaining FBC Attaining DWS Attaining Agl Attaining AgL Attaining | 2000
10 sampling events | Turbidity
NTU | 10
(A8Wc) | <1-233 | 3 of 10 | Inconclusive | ADEQ collected 10 samples at 2 sites in 1997-2000. Reach assessed as "attaining some uses." Add to Planning List due to turbidity exceedances. | Upper Gila Watershed UG - 10 | STREAM NAME
SEGMENT | AGENCY AND PROGRAM SITE DESCRIPTION | YEAR SAMPLED
NUMBER AND | | STAI | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | |---|--|---|-----------------------|---------------------------------|-------------------------------|-----------------------------------|------------------------------|--| | WATERBODY ID DESIGNATED USES | SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | East Turkey Creek
headwaters -San Simon
AZ15040006-637
A&Wc, FC, FBC, AgL | ADEQ Biocriteria program
Above Forest Road 42
UGETK007.70
100545 | 1998 - 1 suite | ОК | | | | | | | | Summary Row | 1998
1 sampling events | | | | | Not assessed | Insufficient data to assess. | | Frye Creek
headwaters-Highline Canal
AZ15040005-988
A&Wc, FC, FBC, AgI, AgI. | ADEQ
Biocriteria and Fixed Station
At first crossing of Trail
36UGFRY007.00
100720 | 1996 - 1 suite
2000 - 3 suites | Dissolved oxygen mg/L | 7.0
90% saturation
(A&Wc) | 6.3-7.8
(73-88%) | 2 of 4 | | Staff documented that low dissolved oxygen was due to ground water upwelling that is naturally low in dissolved oxygen; therefore, not considered in the final assessment. | | | Summary Row A&Wc Attaining FC Attaining FBC Attaining AgL Attaining | 1996-2000
4 samples | OK _ | | | | Attaining | ADEQ collected 4 samples in 1996-2000.
Reach assessed as "attaining all uses." | | Gila River
NM border-Bitter Creek
AZ15040002-004
A&Ww, FC, FBC, AgI, AgL | USGS
Station #0943200
Below Blue Creek, Virden, NM
UGGLR213.01
100728 | 1998 - 6 suites
1999 - 5 suites
2000 - 4 suites | Turbidity
NTU | 50
(A&Ww) | 1-130 | 3 of 15 | | Samples taken in New Mexico. Used only as supporting data. Not included in final assessment. | | | ADEQ Fixed Station Network
Duncan @ New Mexico border
UGGLR205.35
100808 | 2000 - 2 suites | ок | | | | | | | | USGS
Station #09431500
Near Redrock, New Mexico
UGGLR219.53 | 1996 - 6 suites
1999 - 3 suites
2000 - 3 suites | Turbidity
NTU | 50
(A&Ww) | <1-10,000 | 1 of 7 | | Samples taken in New Mexico. Used only as supporting data. Not included in final assessment. | | | A&Ww. Inconclusive FC Inconclusive FBC Inconclusive AgI Inconclusive AgL Inconclusive | 1996-2000
2 samples (In
Arizona) | | | | | Inconclusive | ADEQ collected 2 samples in 2000. Reach assessed as "inconclusive"because of insufficient data collected in Artzona. Exceedances in New Mexico and downstream in Artzona suggest that turbidity may be impairing this reach. | | Gila River
Skully Creek-San Francisco
AZ15040002-001
A&Ww, FC, FBC, Agl, AgL | ADEQ TMDL Program
Above San Francisco River
UGGLR195.11
100810 | 1997 - 1 suite + 4
metals, nutrients
1998 1 suite | Turbidity
NTU | 50
(A&Ww) | 7-1000 | 5 of 6 | | | | | ADEQ Fixed Station Network
Above Old Safford Bridge
UGGLR197.26
100809 | 2000 - 4 suites | Turbidity
NTU | 50
(A&Ww) | 2-65 | 1 of 4 | | | | STREAM NAME | AGENCY AND PROGRAM | YEAR SAMPLED | T- | STAI | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | |---|---|--|-------------------------|---------------------------------|-------------------------------|---------------------------------------|------------------------------|---| | SEGMENT
WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | NUMBER AND
TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | | Summary Row A&Ww Inconclusive FC Attaining FBC Attaining Agl Attaining Agl Attaining | 1997-2000
10 sampling events | Turbidity
NTU | 50
(A&WW) | 2-1000 | 6 of 10 | Inconclusive | ADEQ collected 10 samples at 2 sites in 1997-2000. Reach assessed as "attaining some uses." Add to Planning List due to turbidity
exceedances. | | Gila River
San Francisco River-Eagle Cr
AZ15040005-024
A&Ww, FC, FBC, Agl, AgL | ADEQ TMDL Program
Above Eagle Creek
UGGLR193.58
100812 | 1997 - 1 suite + 4
field, Cu, Zn,
1998 - 1 suite | Turbidity
NTU | 50
(A&Ww) | 7-458 | 6 of 6 | | | | | ADEQ TMDL Program
Below San Francisco River
UGGLR194.91
100811 | 1997 - 1 suite + 4
field, metals
1998 - 1 suite | Turbidity
NTU | 50
(A&Ww) | 6-701 | 6 of 6 | | | | | Summary Row A&Ww Inconclusive FC Attaining FBC Attaining Agl Attaining AgL Attaining | 1997-2000
12 samples
6 sampling events | Turbidity
NTU | 50
(A&Ww) | 6-701 | 12 of 12 | Inconclusive | ADEQ collected a total of 12 samples at 2 sites in 1997-2000. Reach assessed as "attaining some uses." Add to Planning List due to turbidity exceedances. | | Gila River
Eagle Creek-Bonita Creek
AZ15040005-023
A&Ww, FC, FBC, Agl, Agl. | ADEQ TMDL Program
Below Eagle Creek
UGGLR193.47
100813 | 1997 - 1 suite + 4
field, Cu, Zn,
1998 -1 suite | Turbidity
NTU | 50
(A&Ww) | 10-356 | 5 of 6 | | | | | ADEQ TMDL Program
Above Bonita Creek
UGGLR190.39
100814 | 1997 - 4 suites + 1
field, bacteria
1998 - 1 suite | Turbidity
NTU | 50
(A&Ww) | 12-413 | 4 of 6 | | | | | Summary Row A&Ww Inconclusive FC Attaining FBC Attaining Agi Attaining AgL Attaining | 1997-1998
12 samples
6 sampling events | Turbidity
NTU | 50
(A&Ww) | 12-413 | 9 of 12 | inconclusive | ADEQ collected 6 samples in 1997-2000.
Reach assessed as "attaining some
uses." Add to Planning List due to
turbidity exceedances. | | Gila River
Bonita Creek-Yuma Wash
AZ15040005-022
A&Ww, FC, FBC, Agl, AgL | ADEQ TMDL Program
Below Bonita Creek
UGGLR190.45
100815 | 1997 - 5 suites
1998 - 1 suite | Turbidity
NTU | 50
(A&Ww) | 11-630 | 5 of 6 | | | | | USGS
Station #09448500
Solomon above Safford Valley | 1996 - 6 suites
1997 - 6 suites
1998 - 6 suites | Escherichla coli
CFU | 580
(FBC) | <1- 2500 | 1 of 27 | | | | | UGGLR188.98
100729 | 1999 - 6 suites
1999 - 5 suites
2000 - 4 suites | Fecal coliform
CFU | 4000
(A&Ww, AgI, AgL) | 1-10000 | 2 of 27
more than 5
years apart | | | | | | | Turbidity
NTU | 50
(A&Ww) | <1-3000 | 8 of 27 | | | | STREAM NAME | AGENCY AND PROGRAM | | STAI | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | | | | | | | |--|---|--|--------------------------|---------------------------------|-------------------------------|-----------------------------------|------------------------------|---|--------------|----------|---------|-----------|--| | SEGMENT
WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | | | | | | | Summary Row | 1996-2000 | Turbletty
NTU | 50
(A&Ww) | <1-3000 | 13 of 33 | Impaired | ADEQ collected 6 samples and USGS collected 27 samples in 1996-2000. | | | | | | | | FC Attaining FBC Attaining | 33 samples | Escherichia coli
CFU | | | | | | 580
(FBC) | <1- 2500 | 1 of 27 | Attaining | Reach assessed as "impaired" due to turbidity. | | | Agl Attaining AgL Attaining | | Fecal coliform | 4000
(A&Ww, Agil,
Agil.) | 1-10000 | 2 of 33
>5 years apart | Attaining | | | | | | | | K P Creek
headwaters-Blue River
AZ15040004-029
A&Wc, FC, FBC, Agl, DWS | ADEQ Fixed Station Network
@ Blue River
UG0KP000.08
100889 | 2000 - 2 suites + 1
nutrients + field,
bacteria | Dissolved oxygen mg/L | 7.0 (90% saturation) (A&Wc) | 6.2-7.6
(65-91%) | 2 of 4 | | Staff documented that low dissolved oxyger was due to ground water upwelling that is naturally low in dissolved oxygen; therefore not considered in the final assessment. | | | | | | | | ADEQ Fixed Station Network
Below K P Cienega
UG0KP006.59
100888 | 2000 - 1 suite | ок | | | | - | Intermittent or ephemeral flow. | | | | | | | | Summary Row A&Wc Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive DWS Inconclusive | 2000 4 samples 3 sampling events Missing core parameters | ОК | | | | Inconclusive | ADEQ monitored 2 sites in 2000. Reach
assessed as "inconclusive" due to
insufficient metals samples. | | | | | | | North Fork Cave Creek
headwaters - Cave Creek
AZ15040006-856
A&Wc, FC, FBC, AgI, AgL
Unique Waters | ADEQ Unique Waters Program
Above confluence with Cave Cr.
UGNCV000.03
101129 | 1999 - 1 suite | ок | | | | | | | | | | | | | Summary Row | 1999
1 sampling event | | | | | Not assessed | inaufficient data to assess. | | | | | | | San Francisco River
neadwaters-New Mexico | ADEQ Fixed Station Network
Above Luna Lake
UGSFR059.98 | 1996 - 4 suites + 2
bacteria | Dissolved oxygen mg/L | 7.0 (90%
saturation) (A&Wc) | 5.6-9.4
(72-100%) | 1 of 8 | | | | | | | | | AZ15040004-023
A&Wc, FC, FBC, AgI, AgL | 100381 | 1999 - 2 suites
2000 - 2 suites | Turbidity
NTU | 10
(A&Wc) | 6-61 | 7 of 8 | | | | | | | | | | Summary Row A&Wc Inconclusive FC Attaining FBC Attaining Agl Attaining AgL Attaining | 2000
10 sampling events | Dissolved oxygen
mg/L | 7.0 (90% saturation)
(A&Wc) | 5.6-9.4
(72-100%) | 1 of 8 | Inconclusive | ADEQ collected 10 samples in 1997-
2000. Reach assessed as "attaining
some uses"and added the Planning | | | | | | | | | | Turbidity
NTU | 10
(A&Wc) | 6-61 | 7 of 8 | Inconclusive | List due to DO and turbidity exceedances. | | | | | | | STREAM NAME | AGENCY AND PROGRAM | YEAR SAMPLED | | STAN | DARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | |--|---|--|-------------------------|-----------------------------------|-------------------------------|-----------------------------------|------------------------------|---| | SEGMENT
WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | NUMBER AND
TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | San Francisco River
New Mexico-Blue River
AZ15040004-004
A&Ww, FC, FBC, AgI, AgL | ADEQ Fixed Station Network
Near Martinez Ranch
UGSFR017.66
100834 | 2000 - 4 suites | Turbidity
NTU | 50
(A&Ww) | 3-74 | 1 of 4 | | Missing core parameters; insufficient metals samples. | | | Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive AgI Inconclusive AgL Inconclusive | 2000 4 sampling events Missing core parameters | Turbidity
NTU | 50
(A&Ww) | 3-74 | 1 of 4 | Inconclusive | ADEQ collected 4 samples in 2000. Reach assessed as inconclusive" and added to the Planning List due to missing core parameters (metals) and turbidity exceedances. | | San Francisco River
Blue RLimestone Gulch | ADEQ
TMDL Program and Fixed Station | 1997 - 5 suites
1998 - 1 suite | Beryllium
µg/L | 0.21
(FC) | 1.1 | 1 of 1 | | 9 other beryllium samples were not included because the detection limit was too high to assess Fish Consumption. | | AZ15040004-003
A&Ww, FC, FBC, AgI, AgL | 6 miles above Clifton (& mining)
UGSFR011.29
100708 | 1999 - 3 suites
2000 - 4 suites | Turbidity .
NTU | 50
(A&Ww) | 1-872 | 4 of 11 | | assess Fish Consumption. | | | Summary Row A&Ww Inconclusive | 1997-2000
13 sampling events | Berytllum | 0.21
(FC) | 1.1 | 1 of 1 | Inconclusive | ADEQ collected 13 samples in 1997-
2000. Reach assessed as "attaining
some uses"and added to the Planning | | | FC Inconclusive FBC Attaining Agi Attaining AgL Attaining | | Turbidity
NTU | 50
(A&Ww) | 1-872 | 4 of 11 | Inconclusive | List due to turbidity and beryllium
exceedances | | San Francisco River
Limestone Gulch-Gila River
AZ15040004-001
A&Ww, FC, FBC, Agl, AgL | ADEQ TMDL Program
At confluence with Gila River
UGSFR000.04
100818 | 1997 - 6 suites
1998 - 1 suite | Turbidity
NTU | 50
(A&Ww) | 3-176 | 2 of 6 | | | | | ADEQ
TMDL Program and Fixed Station | 1996 - 6 suites
1997 - 4 suites + 1 | Beryllium
µg/L | 0.21
(FC) | <0.5-12.5 | 2 of 23 | | | | | Below Clifton (below mining)
UGSFR003.04
100382 | metals, inorganics
1998 - 4 suites + 2
bacteria + 1 nutrients,
metals | Beryllium
µg/L | 4
(FBC) | <0.5-12.5 | 1 of 23 | | | | | | 1999 - 5 suites
2000 - 4 suites | Copper (dissolved) µg/L | varies (62)
(A&Ww) | <10-17(| 1 of 29 | | | | | | 8 | Dissolved oxygen mg/L. | 6.0
(90% saturation)
(A&Ww) | 5.2-10.3
(82-133%) | 2 of 27 | | | | | | | Escnenchia coli
CFU | 580
(FBC) | <2-3,20) | 1 01 24 | | | | | | | Fecal coliform
CFU | 4000 | <2-4,60) | 1 of 20 | | | | | | | Turbidity , | 50
(A&Ww) | <1-100) | 7 of 27 | | Only two samples were related to high flows. | | STREAM NAME | AGENCY AND PROGRAM | YEAR SAMPLED
NUMBER AND | | STAI | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E |
VENT | | | | | | | | | |---|---|--|--------------------------|-----------------------------------|-------------------------------|-----------------------------------|------------------------------|--|--------------|----------|----------------------------|-----------------------|-------------|---------|-----------|--| | SEGMENT
WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | | | | | | | | | | Summary Row | 2000 | Turbidity
NTU | 50
(A&Ww) | 3-176 | 9 of 33 | Impaired | ADEQ collected 33 samples at two sites in 1996-2000. Reach assessed as "Impaired" due to turbidity. | | | | | | | | | | | A&Ww impaired FC Attaining FBC Attaining Agi Attaining | 33 samples
26 sampling events | Beryllium
µg/L | 0.21
(FC) | <0.5-12.5 | 2 of 23 | Attaining | impared ode to turbuity. | | | | | | | | | | | AgL Attaining | | Beryllium
µg/L | 4
(FBC) | <0.5-12.5 | 1 of 23 | Attaining | | | | | | | | | | | | 4-6 | A+Loud & | | | | | | | | | Copper (dissolved)
µg/L | varies (62)
(A&Ww) | <10-170 | 1 of 29 | Attaining | | | | | | Dissolved oxygen mg/L | 6.0
(90% saturation)
(A&Ww) | 5.2-10.3
(82-133%) | 2 of 27 | Attaining | | | | | | | | | | | | | | | | | | | Escherichia coli
CFU | 580
(FBC) | <2-3,200 | 1 of 24 | Attaining | Carlon Land | | | | | | ALA SALUKISA | | Fecal coliform
CFU | 4000 | <2-4,600 | 1 of 20 | Attaining | | | | | | | | | | | South Fork Cave Creek
headwaters-Cave Creek
AZ15040006-849
A&Wc, FC, FBC, Agl, AgL | ADEQ Unique Waters Program
Above confluence with Cave Cr.
UGSCV000.12
101109 | 1997 - 1 suite
1998 - 1 suite
1999 - 1 suite | Dissolved oxygen
mg/L | 7.0
90% saturation
(A&Wc) | 6.2-7.8
(85.6-97.4) | 1 of 3 | | Staff documented that low dissolved oxyger was due to ground water upwelling that is naturally low in dissolved oxygen; therefore not considered in the final assessment. | | | | | | | | | | Unique Waters | ADEQ Biocriteria & Fixed Station
Above South Fork Campground
UGSCV002.26
100639 | 1997 - 1 fleld,
nutrients, inorganics
1998 - 1 suite
1999 - 1 suite + 1 - | Dissolved oxygen mg/L | 7.0
90% saturation
(A&Wc) | 3.6-7.9
(39.5-
91.3%) | 3 of 7 | | Staff documented that low dissolved oxygen was due to ground water upwelling that is naturally low in dissolved oxygen; therefore, not considered in the final assessment. | | | | | | | | | | | | metals, inorganics
2000 - 4 suites | Turbidily
NTU | 10
(A&Wc) | <1-36 | 1 of 7 | | Very high flow (normally < 1 cfs, flow at 22 cfs). Pristine watershed. | | | | | | | | | | | ADEQ Biocriteria Program
Above South Fork Campground
UGSCV002.45
100640 | 1998 - 1 suite | OK | | | | | | | | | | | | | | | | Summary Row A&Wc Attaining FC Attaining FBC Attaining Agl Attaining AgL Attaining UW Attaining | 1997-2000
11 samples
7 sampling events | Turbidity
NTU | 10
(A&Wo) | বারট | ,1 of 11 | Attaining | ADEQ collected a total of 12 samples at
2 sites in 1997-2000. Reach assessed as
"attaining all uses." | | | | | | | | | | STREAM NAME | AGENCY AND PROGRAM | YEAR SAMPLED | - | STAN | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | |---|---|---|-----------------------|-----------------------------------|-------------------------------|-----------------------------------|------------------------------|--| | SEGMENT
WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | NUMBER AND
TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | LAKES MONITORING | DATA | | | | | | | | | Dankworth Pond
AZL15040005-0440
A&Wc, FC, FBC | ADEQ Lakes Program
UGDAN-A
100018 | 1997 - 4 suites
2000 - 3 suites | Dissolved oxygen mg/L | 7.0
(90% saturation)
(A&Wc) | 4.3-8.1
60-86% | 5 of 6 | | Staff documented that low dissolved oxyge
was due to ground water upwelling that is
naturally low in dissolved oxygen; therefore | | | | | Fluoride
mg/L | 8.4
(FBC) | 14-17 | 7 of 7 | | not considered in the final assessment. Naturally high fluoride levels in ground | | | | | Selenium
µg/L | 20
(A&Wc) | <5-25 | 1 of 7 | | water. Exceedances not included in final assessment. | | | ADEQ Lakes Program
UGDAN-B
100987 | 2000 - 2 nutrients,
field | Dissolved oxygen mg/L | (90% saturation)
(A&Wc) | 4.4-7.7
(50-102%) | 1 of 2 | | Missing core parameters: Escherichia coli | | | ADEQ Lakes Program
UGDAN-Spring 1 (pond)
100988 | 2000 - 2 suites + 1
pH, DO | Dissolved oxygen mg/L | 7
(90% saturation)
(A&Wc) | 3.6-5.8
(57-75%) | 3 of 3 | | | | | | | Fluoride
mg/L | 8.4
(FBC) | 12.0-13.0 | 2 of 2 | | | | | ADEQ Lakes Program
UGDAN-Springs 2, 3, 4
100990, 100991, 100992 | 1997 - 1 suite
2000 - 1 suite | Dissolved oxygen mg/L | 7
(90% saturation)
(A&Wc) | 0.1-2.6 | 4 of 4 | | | | | | (at 3 springs) | Fluoride
mg/L | 8.4
(FBC) | 12.0-17.0 | 2 of 2 | | | | | Summary Row A&Wc Attaining FC Attaining FBC Inconclusive | 1997-2000 13 samples 7 sampling events Missing bacteria samples | OK | | | | Attaining | ADEQ collected a total of 13 samples at
4 sites in 1997-2000. Lake assessed as
"attaining some uses" and added to the
Planning List due to missing core
parameters (bacteria). | | Luna Lake
AZL15040004-0840 | AGFD Routine Monitoring
UGLUN | 1997 - 1 suite
1998 - 2 suites | pH
SU | 6.5-9.0
(A&Wc, FBC, AgL) | 8.4-9.9 | 2 of 3 | | Missing core parameters: Escherichia coli | | A&Wc, FC, FBC, AgL | ADEQ Lakes Program
UGLUN-A
100036 | 1997 - 4 suites
2000 - 1 suite | Dissolved oxygen mg/L | 7
(90% saturation)
(A&Wc) | 5.4-10.1
(51-145%) | 1 of 5 | | | | • | 100036 | | pH
SU | 6.5-9.0
(A&Wc, FBC, AgL) | 7.2-9.7 | 2 of 5 | | | | | ADEQ Lakes Program
UGLUN-B
100979 | 2000 - 1 suite | OK | | | | | | | | Summary Row A&Ww Not attaining FC Attaining | 1997-2000
9 samples
7 sampling events | pH
SU | 6.5-9.0
(A&Wc, FBC,
AgL) | 7.29-9.9 | 4 of 8 | Not attaining | ADEQ collected 6 samples and AGFD collected 3 samples in 1997-2000. Reach assessed as "not attaining" due to exceedances and a TMDL completed | | | FC Attaining FBC Not attaining AgL Not attaining | FC Attaining 7 sampling events FBC Not attaining Missing bacteria | Dissolved oxygen mg/L | (90% saturation)
(A&Wc) | 5.4-10.1
(51-145%) | 1 of 8 | Inconclusive | and approved by EPA in 2000 for high
pH and narrative nutrients. Added to the
Planning List for effectiveness
monitoring. | | STREAM NAME
SEGMENT | AGENCY AND PROGRAM SITE DESCRIPTION | YEAR SAMPLED
NUMBER AND | | STA | NDARDS EXCEE | DED AT THIS SITE | PER SAMPLING E | VENT | |---|---|--|-----------------------|-----------------------------------|-------------------------------|-----------------------------------|------------------------------|--| | WATERBODY ID
DESIGNATED USES | SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE
SUPPORT | COMMENTS | | Roper Lake
AZL15040005-1250
A&Ww, FC, FBC | ADEQ Lakes Program
UGROP - A
100080 | 1997 - 4 suites
2000 - 3 suites | Dissolved oxygen mg/L | 7.0
(90% saturation)
(A&Wc) | 5.4-9.1
(74-105%) | 2 of 5 | | Staff documented that low dissolved oxyger was due to ground water upwelling that is naturally low in dissolved oxygen; therefore not considered in the final assessment. Naturally high fluoride levels in ground water. Exceedances not included in final assessment. | | | | | Fluoride
mg/L | 8.4
(FBC) | 6.8-18.0 | 7 of 7 | | | | | ADEQ Lakes Program
UGROP - B
100975 | 1997 - 4 suites
2000 - 3 suites | Fluoride
mg/L | 8.4
(FBC) | 15.0-16.0 | 2 of 2 | | | | | ADEQ Lakes Program
UGROP - Pond
100976 | 2000 - 2 suites | OK | | | | | Missing core parameters: Escherichia coli | | | ADEQ Lakes Program
UGROP - Canal
100978 | 2000 - 2 suites | Fluoride
mg/L | 8.4
(FBC) | 15.0-16.0 | 2 of 2 | | | | | Summary Row A&Ww Attaining FC Attaining FBC Inconclusive | 1997-2000 18 samples 7 sampling events Missing core parameters | | | | | Attaining | ADEQ collected samples at up to 4 sites during 7 sampling events in 1997-2000. Lake assessed as "attaining some uses" due to missing core parameters. | #### Information for interpreting these Monitoring Tables - "Segment"
designates the beginning and end points of the reach. - "Waterbody ID" is derived from combining the following: AZ (for streams) or AZL (for lakes) + a US Geological Survey Hydrologic Unit Code + EPA stream reach number or ADEQ lake number. - "Designated Uses," "Agency," and "Units" (of measurement) abbreviations are defined in Appendix A. - "Site Code" is an ADEQ derived abbreviation for the surface water basin, stream name or lake name, and the location of the site. For streams, the numbers are the miles upstream from mouth (normally measured as a straight line vector). - "ADEQ Database ID" -- This is ADEQ's water quality database reference number. If the data is not in this database, no number will be shown. - "Samples" -- The year and number of water samples is shown. The federal "water year" is used, from October 1st through September 30th, rather than the calendar year. Types of samples: - "Suite" indicates that a broad range of chemical constituents were collected and field measurements were taken (normally inorganics, metals, nutrients, and bacteria.) The chemical constituents monitored are not consistent among the many monitoring entities that provided the data. If the suite did not include the core parameters needed to assess a designated use as "attaining," the missing core parameters are indicated. - "Field" indicates that only field measurements such as dissolved oxygen, pH, turbidity, and water temperature were collected. - If a specific parameter or parametric group (e.g., zinc, metals, bacteria) is named, monitoring was limited to only these parameters - "Standards Exceeded at this Site per Sampling Event." - Although many parameters may be analyzed, only those exceeding a standard are shown. Other parameters were collected. - "OK" indicates that no standards were exceeded. - The specific standards are shown as a single parameter may have multiple standards depending on the designated uses assigned. (See standards in Appendix C.) - "The Range of Results" indicates the minimum and maximum sample results. If the laboratory reported result is "less than the detection limit" or "not detected," a less than (<) value will be shown along with the detection limit (e.g., <0.5 mg/L). - A mean, geometric mean, or median will be shown along with the range of results if applicable to the standard or assessment criteria. - "Comments" include other information used in interpreting the data for assessments, such as evidence that exceedance is solely due to natural conditions, or that the data does not meet the new "credible" data requirements. - In the "Summary Row" parameter exceedances are combined from multiple sites, and the assessment of each designated use is shown. The overall assessment for the surface water is described in the "Comments" field: "Attaining," "Not attaining," "Impaired," or "Inconclusive." See assessment criteria in Chapter III of Volume I. ### Ground Water Assessments in the Upper Gila Watershed Major Ground Water Stressors -- Monitoring data collected from wells in this watershed between October 1995-October 2000 are summarized in **Table 29** and illustrated in **Figures 54**, **55**, **and 56**. Of the 50 wells monitored, nine exceeded fluoride standards, 7 exceeded standards for metals, and 5 exceeded nitrate standards. The location of the wells monitored and the wells exceeding standards is illustrated in **Figure 54**. Exceedances occurred across the watershed, rather than in an isolated pocket, except that wells in the southern section (around San Simon, Arizona) did not exceed metal standards. TDS Concentrations -- Water quality can be characterized based on concentration of Total Dissolved Solids (TDS). High levels of salinity limits the practical uses of ground water in some areas of this watershed as TDS over 500 mg/L has an off-flavor, and TDS over 1000 mg/L will limit its use for some crops. As illustrated in Figure 55, the elevated TDS is scattered across the watershed, with exceptionally high concentration at one well in the San Simon area. Watershed Protection Fund projects have been used to cap off one high saline well and investigate impacts of other wells (see discussion of these projects in the last section of this watershed). No TDS water quality standards apply in this watershed and the elevated levels of TDS do not present a human-health concern for drinking water. The TDS concentration is only used to generally characterize water quality. Nitrate Concentrations -- Water quality can also be characterized by looking at the concentration of nitrates in ground water. Natural occurring nitrate concentrations in ground water are generally below 3 mg/L. Concentrations above 5 mg/L indicate potential anthropogenic sources of nitrates. A total of eleven wells of the fifty wells sampled, exceeded this level. As illustrated in Figure 566, elevated nitrates occur in the San Simon area and downstream from Safford, both areas have significant irrigated crop production, which may be one source of the elevated nitrates. When nitrate concentrations exceed 10 mg/L, Arizona's Aquifer Water Quality Standard has been exceeded. This standard was set to protect human health, as water with nitrate greater than 10 mg/L may present a health problem for infants and should not be consumed by nursing mothers. Five of the eleven elevated nitrate samples exceeded 10 mg/L. As many of the wells sampled are irrigation wells (not used for drinking water), nitrates over 10 mg/L may not represent a human-health concern. However, efforts should be made to minimize further ground water contamination by nitrate. Table 29. Upper Gila Watershed Ground Water Monitoring 1996 - 2000 | | PARAMETER OR PARAMETER | | NUMBER OF WELLS | DEDOCAL OF WELL O | | |---------------------------|------------------------|---------|---------------------------------|------------------------|--------------------------------------| | MONITORING DATA TYPE | GROUP | SAMPLED | SYNTHETIC CONSTITUENT DETECTED* | EXCEEDING
STANDARDS | PERCENT OF WELLS EXCEEDING STANDARDS | | INDEX WELLS | Radiochemicals | 0 | | - | _ | | | Fluoride | 1 | | 0 | 0% | | | Metals/Metalloids | 1 | | 0 | 0% | | | Nitrate | 1 | | 0 | 0% | | | VOCs + SVOCs* | 0 | - | della | •• | | | Pesticides | 0 | - | - | *** | | TARGETED MONITORING WELLS | Radiochemicals | 5 | | 0 | 0% | | | Fluoride | 47 | | 9 | 19% | | | Metals/metalloids | 47 | | 7 | 15% | | | Nitrate | 49 | and the second of the second of | 5 | 10% | | | VOCs + SVOCs* | 7 | 0 | 0 | 0% | | | Pesticides | 7 | 0 | 0 | 0% | | | WELI | L CLASSIFICATION BY TOTAL DISSOLVED | SOLIDS (TDS) CONCENTRATION | | |--|---|---|--|---| | Total Number of Wells (all targeted wells) | Wells <500 mg/L
Acceptable drinking water flavor | Wells 500-999 mg/L
Fresh (not saline)
Some crop production problems | Wells 1000-3000 mg/L
Slightly saline
Increasing crop production problems | Wells >3000 mg/L
Moderately saline to briny
Severe crop production problems | | 34 | 13 | 7 | 13 | | | WELL CLASSIFICATION BY NITRATE CONCENTRATION (measured as Nitrogen) | | | | | | | | |---|---------------|---|---|--|--|--|--| | Total Number of Wells
(only 1 index well) | Wells <5 mg/L | Wells 5-10 mg/L
May be an anthropogenic source of Nitrates | >10 mg/L
Exceeds standards
Should not be used for drinking water by bables or nursing mothers | | | | | | 50 | 39 | . 6 | | | | | | ^{*}VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds. *The detection of a synthetic constituent (pesticides, VOCs, and SVOCs) is noted because some do not have standards and these substances are not naturally occurring in the ground water. Figure 54. Ground Water Monitoring in the Upper Gila Watershed - 1996-2000 Figure 55. Ground Water Quality by TDS Concentrations in the Upper Gila Watershed Figure 56. Ground Water Quality by Nitrate Concentrations in the Upper Gila Watershed ## Watershed Studies and Alternative Solutions in the Upper Gila Watershed This section highlights surface and ground water studies, mitigation projects, and remediation activities which have been conducted to improve water quality in the Upper Gila Watershed. Watershed partnerships active in this watershed are also mentioned. #### **Surface Water Studies and Mitigation Projects** Total Maximum Daily Load Analyses – The following TMDL analyses have been completed or are ongoing in this watershed. Further information about the status of these investigations can be obtained by contacting the TMDL Program manager at (602) 771-4468, or at ADEQ's web site: http://www.adeq.state.az.us/environ/water/assess/tmdl.html Luna Lake TMDL -- A TMDL for pH and excessive nutrients was completed and approved by EPA in 2000. Historic high external inputs of nutrients (nitrogen and phosphorus) to the lake, along with current inlake nutrient cycling and many sunny days have resulted in a highly productive (eutrophic) system that has repeatedly failed to meet surface water quality standards. The TMDL investigation indicated that the following nonpoint sources contribute nutrients that lead to the impairment: septic systems, forest runoff, agricultural runoff, residential and commercial runoff, decomposition of aquatic plants (i.e., in-lake nutrient cycling), and ground water. To meet standards, the TMDL concluded that the following reductions from historic levels will need to be made: 46% less nitrogen -- down to 69.4
pounds per day, 67% less phosphorus – down to 19 pounds per day, and 37% less chlorophyll a (a measure of algal production). The TMDL recommended the following reductions for the following nonpoint source categories: | | Nitrogen | Phosphorus | |----------------|----------|------------| | septic systems | 50% | 50% | | residential | 50% | 50% | | livestock | 25% | 25% | | elk | 25% | 25% | |--------------------------|-----|-----| | macrophyte decomposition | 60% | 60% | The TMDL identified the following implementation options to meet these reductions: - Determine the number of remaining septic systems that are in use and the extent to which unused systems are continuing to leach nutrients to Luna Lake. If there are a large number of active improperly functioning systems, the community could consider extending sewer lines. - Implement voluntary grazing Best Management Practices that could reduce runoff and loading for pastures to reduce loading from domestic and elk herds. - Implement voluntary Best Management Practices that reduce runoff from residential areas. This runoff is generally caused by impervious surfaces and soil amendments (e.g., fertilizers for lawns). - Use dredging to remove the top meter of sediments that have accumulated most of the nutrients, and thereby, reduce nutrient recycling (Baker and Farnworth, 1995). - Maintain a macrophyte harvesting schedule and/or biological controls of the macrophytes, as macrophytes will re-colonize Luna Lake within a short period of time after dredging has been completed. - Increasing irrigation system efficiency to reduce irrigation water withdrawals, and thereby, provide higher quality lake water. The goal of this TMDL is to incrementally improve water quality. ADEQ will work with the local community and cooperating agencies to develop a monitoring program for Luna Lake to assess whether the management actions are being met. Water Quality Improvement Grants – ADEQ awarded the following Water Quality Improvement Grants in this watershed: - Apache County Luna Lake Improvement Project -- Apache County will dredge accumulated sediment from Luna Lake to increase dissolved oxygen levels, reduce quantities of nutrient-rich sediments on the lake's bottom, lower average pH, and reduce total phosphorous. In addition, the county will establish water quality monitoring points along the San Francisco River to help identify locations of faulty septic systems and provide financial assistance to repair or replace faulty septic systems. For more information contact Cathy Cosgrove at (928) 333-2680 or heroconsulting@hotmail.com. - Road Rehabilitation to Reduce Sediment in the San Simon Watershed The Coronado Resource Conservation and Development District plans to rehabilitate 14 miles of unimproved roads within this sub-watershed using structures at strategic locations to decrease sediment loading to the San Simon. In addition, they are to increase public awareness of erosion and sediment control and how they relate to water quality within this watershed. For further information, contact Pete Brawley of the Upper Gila Partnership at (520) 428-2607. Water Protection Fund Projects – The following projects received Water Protection Funds from the Arizona Department of Water Resources: Fluvial Geomorphology Study and Demonstration Project to Enhance and Restore Riparian Habitat on the Gila River from the New Mexico Border to the San Carlos Nation -- Several streams in this watershed are impaired due to excessive turbidity; therefore, significant resources are being invested to understanding the natural and anthropogenic fluvial geomorphic conditions and attributes that have lead to these exceedances. Gila County and the Upper Gila Partnership have initiated a landmark study of 100 miles of the Gila River from New Mexico border to the San Carlos Indian Nation border. This study will form the basis for the development of demonstration projects which will be implemented at optimum sites along the river to restore riparian vegetation, reduce flood velocity, and create a more stable channel. This project is being funded by the Arizona Watershed Protection Fund and the Bureau of Reclamation. The project is scheduled for completion in 2002. - Gila Box Riparian and Water Quality Improvement Project The Bureau of Land Management improved riparian habitat and water quality within the Gila Box Riparian National Conservation Area by moving livestock grazing from the river to adjacent upland areas. Approximately six miles of fencing were constructed and water lines, stock tanks, and water pumps were installed to provide water to the upland area. This project was completed in 1999. - Eagle Creek Watershed and Riparian Stabilization Project —A private land owner received funds to improve the watershed, upland range and riparian community of Eagle Creek through the installation of fencing, grazing management, and the expansion of existing pipeline to distribute water sources throughout the upland areas. This project was completed in 1999. - Creation of a Reference Riparian Area in the Gila Valley Mt. Graham International Science and Culture Foundation created a highly visible riparian system along a tributary to the Gila River. The project was awarded Arizona Watershed Protection Funds in 2000 to provide outreach and education on the benefits of establishing and maintaining riparian areas and techniques used by land management areas. - Blue Box Crossing Greenlee County was funded to construct a hardened (concrete and riprap) crossing on the Blue river. The project site lies within a steep canyon of the Blue River, which is characterized by high intensity flows (estimated at 11 CFS normal flow and 17,000 CFS during extreme flood flows). The existing gravel crossing washes out in high flows increasing the sediment downstream. The area is habitat for the loach minnow, a species federally listed as Threatened with the potential to be listed as Endangered. Gila River Resource Inventory – The Bureau of Land Management, the Gila Valley Natural Resource Conservation District, and the Upper Gila Partnership pooled resources in 1999 to develop a natural resources inventory and further studies to assist in developing Best Management Practices or other methods to improve watershed conditions and reduce nonpoint source pollution. San Simon Wash Suspended Sediment Monitoring Project –For a 13 year period beginning in 1983, the Bureau of Land Management conducted a monitoring project to determine the effectiveness of range management projects and practices within San Simon Wash drainage area. The parameters examined included: precipitation, storm water flow, movement of suspended sediment, free salt ions in solution (electrical conductivity). Range management practices included: a reduction of cattle numbers, fencing of riparian areas, construction of rock-masonry dams, installation of watering areas to disperse livestock and wildlife range use, concrete river fords, grass seeding, and other erosion control structures. BLM concluded that the stream channel, and possibly some of the watershed, is slowly recovering from over 100 years of abuse. A decline in storm flow and sediment yield, were viewed as an indication that the construction of erosion control structures and implementation of a number of range management practices are effective. #### **Ground Water Studies and Mitigation Projects** Water Protection Fund Projects – Water Protection Funds were also used to fund the following ground water quality projects in this watershed: - Abandonment of an Artesian Geothermal Wells In 1999, Smithville Canal Company received funds to properly cap a deep, abandoned, artesian geothermal well near the Gila river, north of Thatcher Arizona. Discharge from the well was highly saline and was degrading soils and plants in the vicinity, and possibly, degrading downstream water quality in the Gila River. The grantee is now monitoring the site to evaluate changes due to well abandonment. - Stable Isotope Tracers of Water Quality Constituents in the Upper Gila River Decades of water quality monitoring have documented concentrations of total dissolved solids (TDS) in the Gila River and ground water, but the precise sources (both natural and anthropogenic) of the TDS are not known. In this project, the Arizona Geological Survey was to identify the sources and conveyance points of dissolved solids entering the upper Gila River through the use of naturally-occurring stable isotopes. The study area encompasses approximately 200 square miles in southeastern Arizona. Based on the results of the study, Arizona Geological Survey is to develop recommendations for mitigation of excessive TDS concentrations and further studies in the region. This project was completed in 1999. Tritium as a Tracer of Ground Water Sources and Movement in the Upper Gila Drainage — The Arizona Geological Survey also evaluated the use of tritium (a radioactive isotope) to distinguish between sources of ground water influencing the composition (and salinity) of the Gila River. Tritium can be used to determine the age of ground water. This study will assess the utility of using tritium to determine the degree of mixing between deep ground water in contact with highly soluble salts in the basin-fill sediments, and shallow ground water, which is a mixture of subflow from tributaries, infiltration of Gila River water and possible infiltration of irrigation water. This project was completed in 2000. Federal and State Superfund Cleanup Sites — One Superfund site is located in this watershed. • The Safford Military Range Superfund Site -- This 400 acre site is administered by the Bureau of Land Management has been used by the Arizona Army National Guard (the Guard) since 1927for earth moving equipment training and bivouac activities. The Guard also operated a rifle range here from 1958 to the late 1970's. Recently, the Guard investigated the extent of soil
contamination resulting from the numerous lead fragments located throughout the target areas. Lead contamination was shown to be present but confined within the upper six inches of soil. The Guard will to remove all the lead fragments and perform additional sampling to determine if further soil remediation is necessary. #### **Watershed Partnerships** The Upper Gila Partnership – The Upper Gila Partnership (previously known as the Safford-San Carlos-Duncan Partnership) was established in 1993 to develop and implement nonpoint source management strategies and projects in the Upper Gila River Watershed. This citizen and agency based group has been instrumental in addressing water quality issues throughout the watershed, and has initiated many efforts to reduce nonpoint source pollution and educate citizens in the watershed on water quality concerns. Since its institution, its members have sought funding and implemented several important water quality improvement projects, including many of those describe above. Currently, this watershed group is working to rehabilitate 14 miles of unimproved roads within the watershed using structures at strategic locations to decrease sediment entering the San Simon River. They are also administering the Gila River fluvial geomorphology study, and they have recently capped two saline artesian wells that negatively impacted water quality. In 2000, the Upper Gila Partnership hosted a statewide video television conference concerning ADEQ's then new TMDL program. For information about meetings, please contact Pete Brawley, Chairman, at (520) 428-2607. Gila Watershed Forum (formerly the Gila Monster) – The Gila Monster interstate watershed group was formed to coordinate water quality improvement efforts in the upper Gila River drainage area in Arizona and New Mexico. It was formed by the Arizona Department of Environmental Quality in the early 1990's with a primary concern of nonpoint source pollution of water and a secondary concern for natural resources in general. The primary membership consisted of citizens from both states, conservation districts, and county, city, and town governments. They were supported by federal and state agencies concerned with natural resources in both states. Under their leadership, smaller member watersheds in New Mexico and in Arizona developed and implemented many useful projects to protect and enhance natural resources. In 1998, political differences between factions in the two states began to render the Gila Monster ineffective; however, the four smaller watershed groups (three in New Mexico and one in Arizona) continued to meet on their own and to do important work. In 1999, a group of people began to meet in Silver City, New Mexico under the auspices of EPA Region VI (that oversees New Mexico but not Arizona) and the New Mexico Environmental Department. Using a hired negotiator, this group rewrote the goals and objectives of the former Gila Monster watershed group, changed the organization's bylaws and formed a new group called the Gila Watershed Forum. Unfortunately, this conversion was done without consulting Arizona's watershed groups. By late 2000, the Gila Watershed Forum had invited the Upper Gila Partnership to attend their meetings and become a part of their activities. As of this writing in 2001, the Arizona watershed work group must still decide whether to accept the unilateral changes to the organization to encourage future opportunities for collaboration with New Mexico. # Verde Watershed | | | VERDE W | ATERSHED CHARACTERISTIC | cs | | | |-----------------------------------|--|---|---|---|--|---| | SIZE | 6,624 square miles (6% c | of the state's land | area). | | | | | POPULATION BASE | Approximately 153,000 p | eople live in this v | vatershed (estimated from the 2 | 000 census). | This is about 3% of the state's | s population. | | LAND OWNERSHIP (Figure 57) | U.S. Forest Service
Private | 64%
23% | State Land Dept.
Tribal land | 10%
2% | Other state and federal | 1% | | LAND USES AND PERMITS (Figure 58) | | | na-Cottonwood-Verde Valley ar
riculture, recreation, with some | | | n outskirts of Flagstaff. | | HYDROLOGY AND GEOLOGY | from the Verde River are varies from 48 cfs (1956) The Mogollon Rim escar, watershed between two han 12,000 feet in the Sathan S | regulated at two into 145,000 cfs (1) coment forms a top-
hydrologic Provincian Francisco Mountwo ground water small portion of the trate) interbedded | ver drainage area. The Verde Ri
reservoirs — Horseshoe Lake ar
1993), and the annual mean flow
1993), and the annual mean flow
1993), and the annual mean flow
1993, and the annual mean flow
1993, and the annual mean flow
1993, and 1994, annual mean flow
1993, and 1994, annual mean flow
1993, annua | d Bartlett Lak
since 1946 h
,000 feet and
m half), Plates
south.
we manageme
ifers occur in to
vial aquifer wi | e. Flow above Horseshoe Residus been 599 cfs (USGS, 1996) trends northwest across the way Uplands
(northern half). Electric areas: Verde River, Peach three areas: basin-fill sediment | servoir on the Verde River). atershed, dividing the evation ranges from more Springs, the northeast half and alluvium (i.e., sands, | | UNIQUE WATERS | Oak Creek and West For | | Verde Valley area (ADWR 1994 | .). | | | | ECOREGIONS | Arizona-New Mexico Mou | untains, except the | e southern tip that is in the Sout | hem Basin ar | nd Range. | | | OTHER STATES, NATIONS, OR TRIBES | Camp Verde, Tonto Apac | che, Yavapai-Pres | scott, and Fort McDowell tribes | are stakeholde | ers in this watershed. | | Figure 57. Land Ownership in the Verde Watershed Figure 58. General Land Use and NPDES Permits in the Verde Watershed #### Verde Watershed Assessment Discussion #### Statistical Summary of Surface Water Assessments Assessments – For the 2002 assessment, 493 stream miles and 4,674 lake acres were assessed. This assessment reflects data collected in 1999 when this was the focus watershed for monitoring. Water quality assessment information for the Verde Watershed is summarized in the following tables and illustrated in Figure 59. Table 30. Assessments in the Verde Watershed - 2002 | | STREAMS | | LAKES | | | |-------------------|---------|--------------------|-------|-----------------|--| | | miles | number of segments | acres | number of lakes | | | ATTAINING | 234 | 14 | 2,459 | 5 | | | INCONCLUSIVE | 224 | 18 | 1995 | 2 | | | IMPAIRED | 34 | 2 | 0 | 0 | | | NOT ATTAINING | 1 | 1 | 220 | 2 | | | TOTAL
ASSESSED | 493 | 35 | 4,674 | 9 | | | PERENNIAL | | STREAMS | | LAKES | | |-------------------------------|----------|---------|--------------------|-------|-----------------| | SURFACE
WATERS
ASSESSED | | miles | number of segments | acres | number of lakes | | | Assessed | 401 | 27 | 4,674 | 9 | ^{*} Note that streams with significant perennial stretches within the reach assessed were included in the perennial milage although part of the reach may have ephemeral or intermittent flow. Inconclusive Assessments – Surface waters with some monitoring data, but insufficient data to determine if a designated use is attaining or impaired, were added to the new Planning List. During the next watershed monitoring cycle (scheduled in 2004), ADEQ expects to monitor most of these reaches and lakes so that all designated uses can be assessed during the following assessment cycle. Other lakes and streams which lack monitoring data will also be monitored depending on resources and priorities. ADEQ will be working with US Geological Survey and the Arizona Game and Fish Department, so that their future monitoring efforts will better support Arizona's surface water assessments. Major Stressors – When a surface water is listed as impaired or not attaining a designated use, the pollutants or suspected pollutants causing the impairment are identified. In this watershed, two reaches were assessed as impaired due to turbidity: Beaver Creek and Oak Creek. Nutrient TMDLs were completed and approved by EPA at two lakes, Peck's Lake and Stoneman Lake to mitigate high pH and low dissolved oxygen levels. A TMDL was also completed for Oak Creek at Slide Rock State Park due to bacterial violations and subsequent swimming area closures. These two lakes and one reach were assessed as "not attaining," and were placed on the Planning List. They will be monitoring to evaluate the effectiveness of TMDL implementation strategies. Figure 59. Verde Watershed 2002 Assessments | STREAM NAME | AGENCY | YEAR SAMPLED | | S | TANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING | EVENT | |--|--|--|-----------------------|-----------------------------------|-------------------------------|-----------------------------------|---------------------------|--| | SEGMENT
WATERBODY ID
DESIGNATED USES | RBODY ID SITE DESCRIPTION TYPE OF SAI | NUMBER AND
TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | STREAM MONITORING | G DATA | | | | | | | | | Apache Creek
headwaters-Walnut Creek
A215060201-019
A&Ww, FC, FBC, AgL | ADEQ
Stream Ecosystem Monitoring
Near Walnut Creek
VRAPA000.1
100189 | 1997 - 1 suite | ОК | | | | | | | | ADEQ
Biocriteria Program
Above Hunt Tank
VRAPA002.46
100715 | 1996 - 1 suite | ОК | | | | | | | | ADEQ
Stream Ecosystem Monitoring
Below Apache Springs
VRAPA005.2
100190 | 1997 - 1 suite | ОК | | | | | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive | 1996-1997
3 samples
2 sampling events | ок | | | | Inconclusive | ADEQ collected a total of 3 samples from
3 sites in 1996-1997. This intermittent
stream is assessed as "inconclusive" du
to insufficient sampling events. | | Beaver Creek
Dry Beaver CkVerde River
AZ15060202-002
A&Wc, FC, FBC, AgL | ADEQ
Ambient Monitoring
Montezuma's Castle
VRBEV002.62
100706 | 1999 - 1 suite | ОК | | | | | No bacteria samples. | | | ADEQ
TMDL
Montezuma's Castle
VRBEV002.44 | 1999 - 3 field, nutrients,
turbidity
2000 - 2 field, nutrients,
turbidity | Turbidity
NTU | 10
(A&Wc) | 2-218 | 2 of 6 | | Missing core parameters: bacteria. | | | ADEQ
Fixed Station Network/TMDL
at Camp Verde
VRBEV003.64 | 1997 - 3 field, 1 nutrient
1998 - 4 field
1999 - 1 suite + 4 field | Dissolved oxygen mg/l | 7.0
(90% saturation)
(A&Wc) | 5-10.7
(66-104%) | 3 of 9 | | Staff documented that low dissolved oxygen was due to ground water upwelling that is naturally low in dissolved oxygen; therefore, not considered in the final assessment. | | | 100496 | 2000 - 2 field, nutrients | Turbidity
NTU | 10
(A&Wc) | 12-290 | 5 of 7 | | Missing core parameters: bacteria. | | | ADEQ
Ambient Monitoring
Above Verde River
VRBEV000.62 -
100722 | 1999 - 1 suite | Turbidity
NTU | 10
(A&Wc) | 28 | 1 of 1 | | Missing core parameters: bacteria. | | | ADEQ
TMDL Monitoring
at Silt001 | 1999 - 1 field
2000 - 2 field, nutrients | Turbidity · | 10
(A&Wc) | 2-190 | 1 of 3 | | Missing core parameters: bacteria | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | S | TANDARDS EXCI | EEDED AT THIS SI | TE PER SAMPLING I | EVENT | | | |---|---|--|-----------------------|-----------------------------------|----------------------|---------------------------------|-------------------------------|---|---------------------------|----------| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | SITE CODE | USES SITE CODE | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | ADEQ
TMDL Monitoring
at Foam0001 | 2000 - 2 field, nutrients | OK . | | | | | Missing core parameters: bacteria | | | | | ADEQ
TMDL Monitoring
Eureka Ditch | 1999 - 1 field, nutrients
2000 - 2 field, nutrients
(no bacterial samples) | Turbidity
NTU | 10
(A&Wc) | 30-101 | 3 of 3 | | Missing core parameters: bacteria | | | | | ADEQ Biocriterla Program
Above Verde River
VRWBV000.58
100496 | 1997 - 4 field + nutrients
1998 - 1 field + nutrients
+ 2 field | Dissolved oxygen mg/L | 7.0
(90% saturation)
(A&Wc) | 5.2-9.15
(70-97%) | 2 of 7 | | Missing most core parameters. | | | | | ADEQ
TMDL Monitoring
above irrigation return | 1999 - 1 suite
2000 - 2 field, nutrients
(no bacterial samples) | Dissolved oxygen mg/l | 7
90% Saturation
(A&Wc) | 6.6-8.1
71-104%) | 1 of 4 | | Missing core parameters: bacteria | | | | | | | Turbidity
NTU | 10
(A&Wc) | 1-33 | 1 of 4 | | | | | | | Reach Summary Row A&Wc impaired FC Attaining FBC inconclusive | 1997-2000
33 samples
20 sampling events | Dissolved oxygen mg/l | 90% Saturation
(A&Wc) | 5-8.1
(66.6-104%) | 3 of 33 | Attaining | ADEQ collected a total of 26 samples at 9 sites from 1997-2000. Reach assessed as "Impaired" due to turbidity. Add to Planning List due to missing core | | | | | AgL Attaining | Missing core parameters | Turbidity
NTU | 10
(A&Wc) | 20-290 | 13 of 33 | Impaired | parameters. | | | | Bitter Creek
2.5 miles below WWTP-Verde
AZ15060202-066C
A&Ww, FC, PBC, AgL | ADEQ
Stream Ecosystem Monitoring
At confluence with Verde River
VRBIT000.1
100191 | 1997 - 1 suite | ОК | - 7 | | | | | | | | | Reach Summary Row | 1997
1 sampling event | | | | | Not assessed | insufficient to data to assess. | | | | Bitter Creek
WWTP- 2.5 miles below WWTP
AZ15060202-066B
A&Wedw, PBC | ADEQ
Biocriteria Program
0.5 miles below Jerome
WWTP
VRBIT002.64
100424 | 1996 -1 suite | ОК | | | | | | | | | | ADEQ
Stream Ecosystem Monitoring
At pet cemetery
VRBIT003.1
100192 | 1997 - 1 suite | ОК | | | | | | | | | STREAM NAME | AGENCY | YEAR SAMPLED | 1 | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | |--
---|---------------------------------------|----------------------------|--|-------------------------------|-----------------------------------|---------------------------|---|--| | SEGMENT
WATERBODY ID | PROGRAM
SITE DESCRIPTION | NUMBER AND
TYPE OF SAMPLES | | | | | | | | | DESIGNATED USES SITE CODE ADEQ DATABASE ID | SITE CODE | THE OF SAME EED | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | | ADEQ
Stream Ecosystem Monitoring
Below Jerome WWTP
VRBIT002.72
100193 | . 1997 - 1 suite | ОК | | | | | | | | | Reach Summary Row A&Wedw Inconclusive PBC Inconclusive | 1996-1997 3 samples 2 sampling events | ОК | | | | Inconclusive | ADEQ collected a total of 3 samples at 3 sites. Reach assessed as "inconclusive" due to insufficient sampling events. | | | (Unnamed trib.) to Bitter Creek
headwaters-Bitter Creek
AZ15060202-868
A&Ww, FC, PBC, AgL | ADEQ
Ambient and Biocriteria
Unnamed tributary off of Bitter
Creek
VRUBT000.3
100221 | 1997- 1 suite | ОК . | | | | | | | | | Reach Summary Row | 1997
1 sampling event | ок | | | | Not assessed | Insufficient to data to assess. | | | Black Canyon Creek
AZ15060202-886
A&Ww, FC, FBC, AgL | ADEQ
Biocriteria Program
Below Gaddes Canyon
VRBLA006.03
100418 | 1996 - 1 suite | ОК | | | | | Insufficient to data to assess | | | | Reach Summary Row | 1996
1 sampling event | ок | | | | Not assessed | Insufficient to data to assess. | | | Camp Creek
headwaters-Verde River
AZ15060203-031
A&Ww, FC, FBC, DWS, AgI,
AgL | ADEQ
Blocriteria Program
Above Blue Wash confluence
VRCMP009.30
100760 | 1998 - 1 suite | ОК | | | | | | | | | Reach Summary Row | 1998
1 sampling events | ОК | | 1 | | Not assessed | Insufficient to data to assess. | | | East Verde River
headwaters-American Gulch
AZ15060203-022A
A&Wc, FC, FBC, DWS, AgI, AgL | ADEQ
Biocriteria Program
Above Brushy Canyon
VREVR011.19
100549 | 1996 -1 suite | ОК | | | | | | | | | ADEQ
Fixed Station Network | 1999 - 5 suites
2000 - 4 suites | Beryllium, (total)
µg/L | 0.21
(FC) | 0.55 - 2.6 | 2 of 2 | | 7 other beryllium samples did not have a low enough Laboratory Reporting Limit. | | | | below Highway 87 bridge
VREVR012.28
100474 | | Dissolved oxygen mg/L | (A&Wc) | 6.5-11.0 | 1 of 9 | | | | | STREAM NAME
SEGMENT
WATERBODY ID
DESIGNATED USES | AGENCY
PROGRAM
SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | | |---|--|--|--|---------------------------------|-------------------------------|-----------------------------------|---------------------------|--|--| | | | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | | | | Nitrogen (total)
mg/L | 3
(A&Wc) | 0.07- 4.5 | 1 of 9 | | | | | | | | Phosphorus (total)
mg/L | 1
(A&Wc) | 0.2-1.0 | 1 of 9 | | | | | | | | Turbidity
NTU | 10
(A&Wc) | 3.07 - 1,000 | 5 of 9 | | | | | | ADEQ Biocriteria Program
Below Ellison Creek
VREVR015.85
100548 | 1996 - 1 suite | ок | | | | | | | | | ADEQ
Fixed Station Monitoring
Above Second Crossing
VREVR015.97
100786 | 1999 - 2 suites | Turbidity
NTU | 10
(A&Wc) | 23 - 53.6 | 2 of 2 | | | | | | ADEQ
Biocriteria Program
Below Washington Park
VREVR018.56
100546 | 1996 - 1 suite | ок | | | | | | | | | Reach Summary Row | 1998-2000 | Beryllium (total)
μα/L | 0.21
(FC) | 0.55 - 2.6 | 2 of 2 | Attaining | ADEQ collected a total of 14 samples a sites in 1998-2000. Reach assessed as | | | | A&Wc Inconclusive FC Attaining FBC Attaining DWS Attaining Agl Attaining AgL Attaining | Attaining 12 sampling events 12 sampling events 14 staining 15 staining 16 staining 17 staining 18 sta | Dissolved oxygen mg/L | (A&Wc) | 6.5-11.0 | 1 of 13 | Attaining | "attaining some uses" and added to
Planning List due to turbidity
exceedances. | | | | | | Nitrogen (total)
mg/i | (A&Wc) | 0.07-4.5 | 1 of 11 | Attaining | | | | | | | Phosphorus | (A&Wc) | 0.2-1.0 | 1 of 11 | Attaining | | | | | | | Turbidity
NTU | 10
(A&Wc) | 3.07 - 1,000 | 7 of 14 | Inconclusive | | | | East Verde River
American Gulch-Verde River
AZ15060203-022B
A&Wc, FC, FBC, DWS, AgI, AgL | USGS
Station #09507980
Near Childs
VREVR001.42
100739 | 1996 - 6 suites
1997 - 6 suites
1996 - 5 suites
1999 - 6 suites
2000 - 4 suites | Antimony (total) | 6
(DWS) | 1.0-49 | 4 of 26 | | Naturally high levels of antimony and ars
in the ground water seeping into surface
water when flow is below 5 cfs. Because | | | | | | Arsenic (total) | 50
(DWS) | 4.0-170.0 | 5 of 26 | | exceedances are solely naturally occurring,
they are not included in the final assessment | | | | | | Dissolved oxygen mg/L | >7
(A&Wc) | 5.8-7.76 | 1 of 12 | | Staff documented that low dissolved oxygen was due to ground water upwelling that is naturally low in dissolved oxygen; therefore, not considered in the final assessment. | | | | | | Turbidity · NTU | 10
(A&Wc) | 0.2-35 | 2 of 27 | | | | | STREAM NAME
SEGMENT
WATERBODY ID
DESIGNATED USES | AGENCY PROGRAM SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | | |--|--|---|--|---------------------------------|-------------------------------|-----------------------------------|------------------------|--|--| | | | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED USE SUPPORT | COMMENTS | | | | ADEQ
Biocriteria Program
Below Pine Creek
VREVR008.23
100550 | 1996 - 1 suite | ОК | | | | | | | | | Reach Summary Row A&Ww Attaining FC Attaining FBC Attaining DWS Attaining Agi Attaining AgL Attaining | 1996-2000
28 sampling events | Turbidity
NTU | 10
(AEWc) | 0.2-35 | 2 of 27 | Attaining | USGS collected 27 samples and ADEQ collected 1 sample in 1996-2000. See comment above concerning antimony and arsenic exceedances. Reach assessed as "attaining all uses." | | | Ellison Creek
headwaters-East Verde River
AZ15060203-459
A&Wc, FC, FBC, AgL | ADEQ
Biocriteria Program
Above East Verde River
VRELL000.12
100543 | 1996 - 1 suite | ОК | | | | | Missing core parameters: bacteria | | | | ADEQ
Biocriteria Program
Headwaters
VRELL004.47
100542 | 1996 - 1 suite | ок . | | | | | Missing core parameters: bacteria | | | | Reach Summary Row A&Ww Inconclusive FC
Inconclusive FBC Inconclusive AgL Inconclusive | 1996 2 samples 1 sampling event Missing core parameters | ОК | | | | Inconclusive | ADEQ collected a total of 2 samples at
sites in 1996-1997. Assessed as
"Inconclusive" and added to the Plann
list due to lack of sampling events an
missing bacteria | | | Fossil Creek
headwaters-Verde River
AZ15060203-024
A&Ww, FC, FBC, AgL | ADEQ Fixed Station Network
Above Salley Mae Wash
VRFOS005.67
100785 | 1999 - 2 suites | ОК | | | | | | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive | 1999
2 sampling events | OK | | | | Inconclusive | ADEQ collected 2 samples in 1999. Reach assessed as "inconclusive" and added to the Planning List due to lack of sampling events. | | | | 1 | TABLE 31. VERDE | TATEROTIED - | | | | | | | |---|---|--|--|---------------------------------|-------------------------------|--|------------------------|--|--| | STREAM NAME
SEGMENT
WATERBODY ID
DESIGNATED USES | AGENCY PROGRAM SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | | | | | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED USE SUPPORT | COMMENTS | | | Granite Creek headwaters-15060202-060 AZ15060202-059 A&Ww, FC, FBC, AgI, AgL | USGS
#09502960
VRGRA004.68 | 1996 - 1 suite
1999 - 2 suites
2000 - 2 suites | Escherichia coll
CFU/100 mi | 580
(FBC) | 71-8000 | 1 of 3 | | Missing core parameters: turbidity, nutrient many metals. | | | | ADEQ
Fixed Station Network
At Sundog Ranch Road
VRGRA003.88
100489 | 1996 - 2 suites | Beryllium (total)
μg/L | 0.21
(FC) | 0.6 | 1 of 1 | | One other beryllium sample did not have a low enough Laboratory Reporting limit. | | | | | | Escherichia coli
CFU/100 ml | 580
(FBC) | 220-1266 | 1 of 2 | | | | | | | | Turbidity
NTU | 50
(A&Ww) | 7.44-273 | 1 of 2 | | | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive Inconclusive Agl Inconclusive AgL Inconclusive | 1996-2000 7 sampling events Missing core parameters | Beryllium (total)
µg/L | 0.21
(FC) | 0.8 | 1 of1 | Inconclusive | ADEQ collected a total of 7 samples at 2 sites in 1996-2000. Reach assessed as "Inconclusive" and added to the Plannin List due to Escherichia coll, beryllium, a turbidity exceedances and missing core parameters. | | | | | | Escherichia coli
CFU/100 mi | 580
(FBC) | 220-1266 | 2 of 6
(exceedances
occurred 5
years apart) | Inconclusive | | | | | | | Turbidity
NTU | 50
(A&Ww) | 7.44-273 | 1 of 2 | Inconclusive | | | | Houston Creek
headwater-Verde River
AZ15060203-041
A&Ww, FC, FBC, AgL | ADEQ Biocriteria Program
Above Forest Road #6
VRHOU002.75
100761 | 1996 - 1 suite | ОК | | | | | No bacterial samples | | | | Reach Summary Row | 1996
1 sampling event | OK . | | | | Not assessed | Insufficient data to assess. | | | Lime Creek
headwaters-Horseshoe Res
AZ15060203-030
A&Ww, FC, FBC, AgL | ADEQ
Biocriteria Program
1 mile above Verde
VRLIM000.71
100585 | 1996 - 1 suite | OK | | | | | No bacterial or nutrient samples | | | | Reach Summary Row | 1996
1 sampling event | ОК | | | | Not assessed | Insufficient data to assess. | | | Munds Creek
headwaters-Oak Creek
AZ15060202-415
A&Ww, FC, FBC, DWS, AgI,
AgI. | ADEQ TMDL Program
Above Oak Creek
VRMUN000.1 | 1998 - 3 suites | ок | | | | | Missing core parameters: metals, boron. A samples in March, April, and May. | | | | ADEQ TMDL Program
Below Pinewood WWTP
VRMUN003.4 | 1998 - 3 suites | ОК | | | | | | | | STREAM NAME
SEGMENT
WATERBODY ID
DESIGNATED USES | AGENCY PROGRAM SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | | |--|---|--|--|---------------------------------|-------------------------------|-----------------------------------|---------------------------|---|--| | | | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | | ADEQ TMDL Program
West tributary of Munds Creek
Above Pinewood WWTP
VRMUN003.5 | 1997 - 1 suite
1998 - 3 suites | Turbidity
NTU | 50
(A&Ww) | 4-67 | 1 of 2 | | | | | | ADEQ TMDL Program
Southeast trib to O'Dell Lake
VRMUN004.1 | 1998 - 2 suites | ОК | | | | | | | | | ADEQ TMDL Program
Above O'Dell Lake
VRMUN004.3 | 1998 - 3 suites | Turbidity
NTU | 50
(A&Ww) | 5-69 | 1 of 2 | | | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive DWS Inconclusive AgL Inconclusive | 1997-1998 15 samples 4 sampling events Missing core parameters and seasonal representation | Turbidity
NTU | 50
(A&Ww) | 4-69 | 2 of 12 | Attaining | ADEQ collected a total of 15 samples at 5 sites in 1997-1998. Reach is assessed as "inconclusive" and added to the Planning List due to lack of core parameters and seasonal representation. | | | Oak Creek headwaters-West Fork Oak Cr. AZ15060202-019 A&Wc, FC, FBC, DWS, Agl, AgL Unique Waters | ADEQ Biocriteria Program
Below Cave Springs
VROAK023.21
100608 | 1996 - 1 suite
1998 - 1 suite | ОК | | | | | No bacteria, beryllium, boron, or mercury.
Only 1 cadmium, chromium, and lead, zinc, o
fluoride. No mining in the drainage area;
therefore, metal samples not required. | | | | ADEQ TMDL Program
Below Pumphouse Wash
VROAK025.2 | 1998 - 3 field + nutrients,
bacteria | Turbidity
NTU | 10
(A&Wc) | 1-20 | 1 of 3 | | | | | | ADEQ TMDL Program
Above Pumphouse Wash
VROAK025.3 | 1998 - 3 field, nutrients,
bacteria | ОК | | | | | | | | | AGFD
Above Sterling Springs
Hatchery | 1996 - 1 field, nutrients,
bacteria | OK . | | | | | | | | | AGFD
Below Sterling Springs
Hatchery | 1996 - 1 field, nutrients,
bacteria | ок | | | | | | | | | Reach Summary Row A&Ww Inconclusive FC Attaining FBC Attaining DWS Inconclusive AgI Inconclusive AgL Attaining | 1996-1998 9 samples 5 sampling events Missing core parameters | Turbidity
NTU | 10
(A&Wc) | 1-20 | 1 of 9 | Inconclusive | ADEQ and AGFD collected a total of 9 samples at 5 sites in 1996-1998. Reach assessed as "attaining some uses" and added to the Planning List due to turbidity exceedance and missing core parameters (beryllium and boron). | | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | S | TANDARDS EXC | EEDED AT THIS SIT | TE PER SAMPLING | EVENT | |---|---|---|---------------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|--| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | Dak Creek
West Fork Oak CrDry Creek
except Slide Rock State Park) | ADEQ
Fixed Station Network
At Redrock Crossing | 1996 - 5 suites
1997 - 4 suites
1998 - 4 suites | Beryllium (total)
µg/L | 4.0
(DWS, FBC) | 4.1 | 1 of 20 | | | | kZ15060202-018B
k&Wc, FC, FBC, DWS, Agl, Agl.
Jnique Water | VROAK009.33
100492 | 1999 - 5 suites
2000 - 4 suites | Beryllium (total)
µg/L | 0.21
(FC) | 4.1 | 1 of 1 | | Nineteen other beryllium samples did not have a low enough Laboratory Reporting Limit. | | At Red Rock State I
VROAK010.29
100612
ADEQ TMDL Progri | | | Total Nitrogen
mg/L | 2.5
Unique Waters | 0.08-5.0 | 1 of 21 | | | | | | | Total Phosphorus
mg/L | 0.3
Unique Waters | < 0.1 - 1.5 | 1 of 21 | | | | | | | Turbidity
NTU | 10
(A&Wc) | 1-1000 | 3 of 22 | | | | | Biocriteria Program
At Red Rock State Park
VROAK010.29 | 1996 - 1 suite
1999 - 1 suite | Turbidity
NTU | 10
(A&Wc) | 6-15 | 1 of 2 | | | | | ADEQ TMDL Program
Below Redrock Crossing
VROAK011.4 | 1998 - 3 field + nutrients | OK | | | | | | | | ADEQ
Ambient and Blocriteria
At Chavez Crossing
VROAK013.11
100461 | 1996 - 1 suite
1996 - 3 suites | Turbidity
NTU | 10
(A&Wc) | 6-26 | 1 of 3 | | | | | ADEQ
Ambient and Biocriteria
At Highway 179 bridge
VROAK014.54 | 1998 - 3 suites | Turbidity
NTU | 10
(A&Wc) | 6-18 | 1 of 3 | | | | | ADEQ
Fixed
Station Network
below Grasshopper Point
VROAK016.57
100459 | 1996 - 1 suite
1998 - 3 suites | Turbidity
NTU | 10
(A&Wc) | 2-21 | 1 of 4 | | | | | ADEQ TMDL Program
Below Munds Creek
VROAK018.1 | 1998 - 3 suites | Turbidity
NTU | 10
(A&Wc) | 1-30 | 1 of 3 | | | | | ADEQ TMDL Program
Above Munds Creek
VROAK018.3 | 1998 - 3 suites | Turbidity
NTU | 10
(A&Wc) | 1-22 | 1 of 3 | | | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | \$ | TANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING I | EVENT | |---|--|--|--------------------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|--| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | Reach Summary Row | 1996 - 2000 | Beryllium (total)
µg/L | (DWS, FBC) | < 0.5 - 4.1 | 1 of 27 | Attaining | ADEQ collected a total of 44 samples from
8 sites in 1996-2000. The reach is | | | A&Wc Impaired FC Attaining FBC Attaining DWS Attaining | 44 samples
25 sampling events | Beryllium (total)
µg/L | 0.21
(FC) | 4.1 | 1 of 1 | Attaining | assessed as" impaired" due to turbidity. (Note change in designated use in new rule package submitted to EPA would bring this reach into compliance with | | | Agi Attaining AgL Attaining | Sales and | Total Nitrogen
mg/L | 2.5
Unique Waters | 0.08-5.0 | i of 43 | Acceptables atomotemed to | | | | 280-Av-33 | | Total Phosphorus
mg/L | 0.3
Unique Waters | < 0.1 - 1.5 | 1 of 43 | Attaining | | | | | | Turbidity NTU | 10
(A&Wc) | 1-1000 | 9 of 42 | Impaired | | | Oak Creek
At Slide Rock State Park only
AZ15060202-018A | Slide Rock State Park
Routine Bacterial Monitoring
Upstream | 1996 - 2000
839 <i>E. coli</i> samples only | Escherichia coli
CFU/100 ml | 580
(FBC) | 1-2491 | 20 of 839 | | No mining in the drainage area: therefore, metal samples not required to assessed designated uses. | | A&Wc, FC, FBC, DWS, AgI, AgL
Unique Water | Slide Rock State Park
Routine Bacterial Monitoring
Mid-slide | 1996 - 2000
778 <i>E. coli</i> samples only | Escherichia coli
CFU/100 ml | 580
(FBC) | 1-2491 | 20 of 778 | | Samples collected in surrounding reach contained the core parameters (see 15060202-0188). | | | Slide Rock State Park
Routine Bacterial Monitoring
Large Pool | 1996 - 2000
995 <i>E. coli</i> samples only | Escherichia coli
CFU/100 ml | 580
(FBC) | 1-2491 | 16 of 995 | | | | | ADEQ/TMDL
Above Slide Rock Foot Bridge
VROAK020.02 | 1998 -1 field
(no bacteria) | ок | | | | | | | | Slide Rock State Park
Foot Bridge
Routine Bacterial Monitoring | 1996 - 2000
712 E. col/ samples only | Escherichia coli
CFU/100 ml | 580
(FBC) | 1-2491 | 21 of 712 | | | | | Slide Rock State Park
at Highway Bridge
Routine Bacterial Monitoring | 1996 - 2000
853 <i>E. coli</i> samples only | Escherichia coli
CFU/100 ml | 580
(FBC) | 1-2491 | 22 of 853 | | | | | EPA/ADEQ
Biocriteria Program
at Slide Rock State Park
VROAK019.98
100609 | 1996 - 1 suite
(no bacteria) | ОК | | | | | | | | ADEQ/TMDL
Below Slide Rock
VROAK020.0 | 1998 - 1 field
(no bacteria) | ОК . | | | | | | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | s | TANDARDS EXCI | EEDED AT THIS ST | TE PER SAMPLING | EVENT | |---|---|---|-------------------------------|---------------------------------|-------------------------------|---|------------------------|--| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED USE SUPPORT | COMMENTS | | Reach Summary Row A&Wc Inconclusive FC Inconclusive FBC Not attaining DWS Inconclusive AgI Inconclusive AgL Inconclusive | | c Inconclusive 3 samples plus 4177 E. call samples Inconclusive Inconclusive Inconclusive | Escherichia coll
CFW100 ml | 580
(FBC) | 1-2491 | 75 of 4177
(more than 2
exceedances
in a 3-year
period) | Not attaining | ADEQ collected 3 samples at 3 sites in 1996-1998. Slide Rock State Park collected a total of 4177 Escherichia co samples at 5 sites in 1996-2000. EPA approved TMDLs for pathogens, total phosphorus and total nitrogen in 1999. Reach assessed as "not attaining" due E. coll exceedances. Add to Planning it to determine the effectiveness of TMDL implementation strategies. | | Oak Creek
Dry Creek-Spring Creek
AZ15060202-017
A&Wc, FC, FBC, DWS, AgI, AgL
Unique Waters | ADEQ
Biocriteria Program
Below Page Springs
VROAK005.91
100613 | 1996 - 1 suite (few
metals)
1999 - 1 suite | Turbidity
NTU | 10
(A&Wc) | 4-15 | 1 of 2 | | | | | ADEQ TMDL Program
At Page Springs Bridge
VROAK006.4 | 1996 - 1 field, nutrients and turbidity | Turbidity
NTU . | 10
(A&Wc) | 45 | 1 of 1 | | | | | ADEQ
Biocriteria Program
Above Page Springs
VROAK006.49
100614 | 1996 - 1 suite
(few metals) | Turbidity
NTU | 10
(A&Wc) | 1-25 | 1 of 1 | | | | | Reach Summary Row A&Wc Inconclusive FC Attaining FBC Inconclusive DWS Attaining Agi Inconclusive AgL Attaining | 1996-1998 4 samples 3 sampling events Missing core parameters (bacteria and boron) | Turbidity
NTU | 10
(A&Wc) | 1-25 | 3 of 4 | Inconclusive | ADEQ collected a total of 4 samples at 3 sites in 1996-1998. Reach assessed as "attaining some uses" and added to the Planning List due to turbidity exceedances and lack of core parameters | | Oak Creek
Spring Creek-Verde River
AZ15060202-016 | ADEQ TMDL Program
Above Verde River
VROAK000.1 | 1998 - 1 field, nutrients and turbidity | Turbidity
NTU | 10
(A&Wc) | 23 | 1 of 1 | | | | A&Wc, FC, FBC, DWS, AgI, AgL Unique Waters | ADEQ TMDL Program
Above Mormon Crossing
VROAK004.9 | 1998 - 1 field, nutrients and turbidity | ОК | | | | | | | | Reach Summary Row A&Wc Inconclusive FC Inconclusive FBC Inconclusive DWS Inconclusive AgI Inconclusive AgI Inconclusive | 1998 2 samples 1 sampling event | Turbidity
NTU | 10
(A&WC) | 23 | 1 of 2 | Inconclusive | ADEQ collected a total of two samples at two sites in 1998. Assessed as "inconclusive" and added to the Planning List due to lack of sampling events and core parametric coverage. | | STREAM NAME | AGENCY | YEAR SAMPLED | | | STANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING | EVENT | |--|---|--|--------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|---| | SEGMENT
WATERBODY ID
DESIGNATED USES | PROGRAM
SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | NUMBER AND
TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | Pine Creek
headwaters-East Verde River
RiverAZ15060203-049
A&Wc, FC, FBC, DWS, AgI, AgL | ADEQ Biocriteria Program
Above East Verde River
VRPIE000.20
100620 | 1996 - 1 suite
1997 - 1 suite | OK | | | | | Missing core parameters | | | ADEQ Biocriteria Program
Near headquarters
VRPIE013.89
100621 | 1996 - 1 suite
1997 - 1 suite | ОК | | | | | Missing core parameters. | | | Reach Summary Row A&Ww inconclusive FC inconclusive FBC inconclusive DWS inconclusive Agi inconclusive AgL inconclusive | 1996-1997 4 samples 2 sampling events | ок | | | | Inconclusive | ADEQ collected a total of 4 samples at 2 sites in 1996-1997. Reach assessed as "Inconclusive" and added to the Planning List due to lack of sampling events. | | Pumphouse Wash
headwaters-Oak Creek
AZ15060202-442
A&Ww, FC, FBC, DWS, AgI,
AgL | ADEQ
Fixed Station Network
Below Highway 89A bridge
VRPMW002.63
100460 | 1997 - 1 suite
1998 - 1 field | ОК | | | | | | | | ADEQ/TMDL
Above Oak Creek
VRPMW002.7 | 1998 - 3 nutrients, field,
and bact, 4 turbidity | ОК . | | | | | | | | ADEQ/TMDL
Below Kachina Village
VRPMW007.5 | 1998 - 3
nutrients, field,
turbidity, bact | ОК | | | | | | | | ADEQ/TMDL
Above Kachina Village
VRPMW008.4 | 1998 - 2 nutrients, field,
turbidity, bact | ок | | | | | | | | Reach Summary Row A&Ww Attaining FC Attaining FBC Attaining DWS Inconclusive Agi Inconclusive Agi Attaining | 1997-1998 10 samples 5 sampling events Missing core parameters | ок | | | | Inconclusive | ADEQ collected a total of 10 samples at 4 sites in 1997-1998. No mining in the drainage area; therefore, metal samples not required. Reach assessed as "attaining some uses" and added to the Planning List due to insufficient core parameters (fluoride and boron). | | Red Creek
headwaters-Verde River
AZ15060203-818
A&Ww, FC, FBC, AgI, AgL | ADEQ Biocriteria Program
Above second road crossing
VRRED001.97
100626 | 1996 - 1 suite | ОК | | | | | | | אליט וולאט ויה בשני זיה נו היידיייייייייייייייייייייייייייייייייי | Reach Summary Row | 1996
1 sampling events | | | | 4 15/55 | Not assessed | Insufficient to data to assess. | Verde Watershed | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | | STANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING I | EVENT | |---|---|--|--------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|--| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | ADEQ collected a total of 6 samples at 5 sites from 1996-1998. Reach assessed as "attaining some uses" and added to the Planning List due to insufficient bacterial samples. Missing core parameters: bacteria and boron No mining in the drainage area; therefore, metal samples not required. Missing core parameters: bacteria. (Turbidii | | Roundtree Creek
headwaters-Tangle Creek
AZ15060203-853
A&Ww, FC, FBC, AgL | ADEQ Biocriteria Program
3 miles above Tangle Creek
VRROU001.79
100631 | 1996 - 1 suite
1998 - 1 suite | ок | | | | | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive | 1996 - 1998 2 sampling events | OK | | | | inconclusive | | | Spring Creek
Coffee Creek-Oak Creek
AZ15060202-022
A&Ww, FC, FBC, AgI, AgL | ADEQ Ambient and Biocriteria
At Ryerson Ranch
VRSPN001.68
100197 | 1997 - 1 suite | ОК | | | | | Missing core parameters: bacteria | | | ADEQ Ambient and Biocriteria
Above Diversion Dam
VRSPN000.48
100195 | 1997 - 1 suite | ОК | | | | | | | | ADEQ Ambient and Biocriteria
Below Mormon Crossing
VRSPN001.25
100196 | 1997 • 1 suite | ОК | | | | | | | | ADEQ Biocriteria Program
Near road crossing
VRSPN001.36
100650 | 1996 - 1 suite
1998 - 1 suite | ОК | | | | | | | | ADEQ Ambient and Biocriteria
Below Oak Creek Bridge
VRSPN000.15
100194 | 1997 - 1 suite | ОК | | | | | | | | Reach Summary Row A&Ww Attaining FC Attaining FBC Inconclusive Agl Attaining AgL Attaining | 1996-1998 6 samples 3 sampling events Missing core parameters | ок | | | | Attaining | sites from 1996-1998. Reach assessed as
"attaining some uses"and added to the
Planning List due to insufficient bacterial | | Sycamore Creek Tule Canyon-Cedar Creek AZ15060202-026 A&Wc, FC, FBC, AgI, AgL | ADEQ
Stream Ecosystem Monitoring
Near Verde River
VRSYW000.56
100198 | 1997 - 1 suite
(no bacterial samples) | ОК | | | | | | | | ADEQ
Ambient and Biocriteria
Below Summers Springs
VRSYW001.4
100199 | 1996 - 1 field
1997 - 1 field plus metals
1998 - 1 suite
(No bacterial samples) | ОК | | | | | Missing core parameters: bacteria. (Turbio
boron and nitrogen missing except in 1
sample). No mining in the drainage area;
therefore, metal samples not required. | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | | STANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING | EVENT | |--|---|---|--------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|---| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | Reach Summary Row A&Wc Inconclusive FC Attaining Inconclusive AgL Attaining Agi Inconclusive | 1998-1998 4 sampling events Missing core parameters | ОК . | | | | Inconclusive | ADEQ collected a total of 3 samples at 2 sites in 1996-1998; sites close together so assessed as one site. Reach assessed as "attaining some uses" and added to the Planning List due to missing core parameters. | | Sycamore Creek
headwaters-Verde River
AZ15080203-055
A&Ww, FC, FBC, Agl, AgL | ADEQ Biocriteria Program
Tributary of Horseshoe Res.
VRSYH000.16
100656 | 1996 - 1 suite
1998 - 1 suite | ОК | | | | | Missing core parameters: bacteria | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive Inconclusive AgI Inconclusive AgL Inconclusive | 1996-1998
2 sampling events | ОК | | | | Inconclusive | ADEQ collected 2 samples in 1996-1998.
Reach assessed as "inconclusive" and
added to the Planning List due to lack of
sampling events. | | Sycamore Creek
headwaters-Verde River
AZ15060203-002
A&Ww, FC, FBC, AgI, AgL | ADEQ Biocnieria Program
In Mazatzal Mountains
VRSYM012.45
100659 | 1996 - 1 suite | ОК | | | | | | | | Reach Summary Row | 1996
1 sampling event | ок | | | | Not assessed. | insufficient to data to assess. | | Tangle Creek
headwaters-Verde River
AZ15060203-028
A&Ww, FC, FBC, AgI, AgL | ADEQ Biocriteria Program
Near Tangle Peak
VRTGL000.78
100666 | 1996 - 1 suite | Ok | | | | | | | | Reach Summary Row | 1996
1 sampling event | ОК | | | | Inconclusive | Insufficient to data to assess. | | Verde River
Granite Creek-Hell Canyon
AZ15060202-052
A&Ww, FC, FBC, Agl, Agl. | ADEQ Biocriteria Program
East of Paulden
VRVER095.73
100764 | 1996 - 1 suite
1998 - 1 suite | ОК | | | | | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive AgI Inconclusive | 1996 - 1998
2 sampling events | ОК | | | | Inconclusive | ADEQ collected a total of 2 samples in
1996-1998. Reach assessed as
"Inconclusive" and added to the Planning
List due to insufficient sampling events. | | | | TABLE 31. VERDE | WATERSHED - | ONITORING DA | ATA - 2002 AS | SSESSMENT | | | |---|---|---|--------------------------------|-----------------------------------|-------------------------------|-----------------------------------|---------------------------
---| | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | s | TANDARDS EXCI | EDED AT THIS SI | TE PER SAMPLING I | EVENT | | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | Verde River
Hell Canyon-15060202-065
AZ15060202-038
A&Ww, FC, FBC, AgI, AgL | ADEQ Ambient and Biocriteria
Above Perkinsville bridge
VRVER095.54
100672 | 1996 - 1 field
1999 - 1 suite | ОК | | | | | Missing core parameters: bacteria | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive AgI Inconclusive | 1996 - 1999 2 sampling events Missing core parameters | OK , | | | | Inconclusive | ADEQ collected a total of 2 samples in
1996 - 1999. Reach assessed as
"inconclusive" and added to the Planning
List due to insufficient sampling events
and lack of bacteria samples. | | /erde River
5060202-065-Railroad Draw
IZ15060202-037
&Ww, FC, FBC, AgI, AgI. | Fixed Station Network | 1996 - 3 suites + 2 field
1999 - 6 suites
2000 - 4 suites | Dissolved oxygen mg/L | 6.0
(90% saturation)
(A&Ww) | 5.72 - 11.1
(74-122 %) | 1 of 14 | | | | narrw, r o, r bo, ngi, ngc | 100487 | | Escherichia coli
CFU/100 ml | 580
(FBC) | 2 - 2,300 | 1 of 13 | | | | | | | Fecal coliform
CFU/100 ml | 4,000
(A&Ww, Agl, AgL) | 1 - 4,500 | 1 of 12 | | | | | | | Turbidity
NTU | 50
(A&Ww) | 1 - 677 | 4 of 15 | | | | | Reach Summary Row A&Ww Inconclusive FC Attaining | 1998-2000
15 samples | Dissolved oxygen
mg/L | 6.0
(90% saturation)
(A&Ww) | 5.72-11.1
(75-122%) | 1 of 15 | Attaining | some uses" and added to the Planning | | | FBC Attaining Agi Attaining AgL Attaining | 15 sampling events | Escherichia coli
CFU/100 ml | 580
(FBC) | 2 - 2,300 | 1 of 13 | Attaining | ADEQ collected a total of 2 samples in 1996 - 1999. Reach assessed as "inconclusive" and added to the Planning List due to insufficient sampling events and lack of bacteria samples. ADEQ collected a total of 15 samples in 1996 - 1999. Reach assessed as "attaining | | | | | Pecal coliform
CFU/100 ml | 4,000
(A&Ww, Agi,
Agi.) | 1 • 4,500 | 1 of 12 | Attaining | | | | | | Turbidity
NTU | 50
(A&Ww) | 1 - 877 | 4 of 15 | Inconclusive | MINISTER STATE OF THE | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | | STANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING I | EVENT | |--|---|---|--------------------|---------------------------------|-------------------------------|-----------------------------------|------------------------|--| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED USE SUPPORT | COMMENTS | | Verde River
Sycamore Creek-Oak Creek
AZ15060202-025 | USGS/TMDL
Above Dead Horse State Park
VRVER084.38 | 1999 - 1 suite | ОК | | | | | | | And And At VR 100 US Be VR US At VR | ADEQ
Ambient and Biocriteria
At Dead Horse State Park
VRVER84.38
100482 | 1999 - 2 suites | ОК | | | | | | | | USGS/TMDL
Below Dead Horse State Park
VRVER084.42 | 1999 - 1 suite | ок . | | | | | | | | USGS/TMDL
At Tuzigoot Bridge
VRVER085,49 | 1999 - 1 suite | ОК | | | | | | | | USGS/TMDL
At sewage pond
VRVER085.81 | 1999 - 1 suite | ОК | | | | | | | | USGS/TMDL
Above sewage pond
VRVER085.92
344615 112023501 | 1999 - 1 suite | OK | | | | | | | | USGS/TMDL
Below diversion dam
VRVER086.62 | 1999 - 1 suite | ок | | | | | | | | USGS/TMDL
Below Tapco Substation
VRVER087.70 | 1999 - 1 suite | ОК | | | | | | | | USGS
Station #09504000
Near Clarkdale
VRVER091.61
100738 | 1996 - 6 suites
1997 - 6 suites
1998 - 6 suites
1999 - 4 suites
2000 - 4 suites | ОК | | | | | | | | Reach Summary Row A&Ww Attaining FC Attaining FBC Attaining Agi Attaining AgL Attaining | 1996 - 2000
34 samples
28 sampling events | OK E | | | | Attaining | ADEQ collected a total of 33 samples at 8 sites in 1996 -2000. Reach assessed as "attaining all uses." | | Verde River
Dak Creek-Beaver Creek
AZ15060202-015
A&Ww, FC, FBC, Agl, AgL | ADEQ TMDL Program
Across from Reservation
VRVER075.14
100718 | 1999 - 1 suite | OK . | | | | | No bacterial samples. | | | | TABLE 31. VERDE | WAIEKSHED | MONITORING DA | ATA - 2002 AS | DESOMENT | | | |---|---|---|--------------------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|--| | STREAM NAME
SEGMENT
WATERBODY ID | AGENCY PROGRAM SITE DESCRIPTION | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | | S | TANDARDS EXCI | EEDED AT THIS SI | TE PER SAMPLING | EVENT | | DESIGNATED USES | SITE CODE ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | ADEQ Biocriteria & TMDL
At 1000 Trails
VRVER078.76
100481 | 1996 - 1 suite
1999 - 1 suite | OK | | | | | No bacterial samples | | | ADEQ TMDL Program
Below Oak Creek
VRVER078.8 | 1998 - 1field, nutrient | ОК | | | | | Lacking core parametric coverage | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive Agl Inconclusive AgL Inconclusive | 1996 - 1999 4 samples 3 sampling events Missing.core parameters at 1 event. | ОК | | | | Inconclusive | ADEQ collected a total of 4 samples at 3 sites 1996-1999. Reach assessed as "inconclusive" and added to the Plannin List due to missing core parameters at one of the three sampling events. | | Verde River
15060203-West Clear Creek
AZ15060203-027
A&Ww, FC, FBC, AgI, AgL | ADEQ Biocriteria Program
Above West Clear Creek
VRVER066.74
100723 | 1996 - 1 suite
1999 - 1 suite | OK . | | | | | No bacterial samples. | | | USGS #09505570
Above West Clear Creek
VRVER066.64
100750 | 1996 - 10 suites
1997 - 5 suites
1998 - 6 suites | OK | | | | | No bacterial samples. | | | Reach Summary Row A&Ww Attaining FC Attaining FBC Intonclusive Agi Attaining AgL Attaining | 1996 - 1999 23 sampling events Missing core parameters (bacteria) | ОК | | | | Attaining | ADEQ and USGS collected at total of 25 samples at 2 sites 1996-1999. Reach assessed as "attaining some uses" and added to the Planning List due to missis core parameters. | | Verde River
West Clear Creek-Fossil Creek
AZ15060203-025 | ADEQ
Fixed Station Program
At Beasley Flat | 1999 - 4 suites
2000 - 4 suites | Escherichia coli
CFU/100 ml | 580
(FBC) | <2- 1,125 | 1 of 8 | | | | A&Ww, FC, FBC, Agl, AgL | VRVER064.68 | | Turbidity
NTU | 50
(A&Ww) | 7-998 | 3 of 8 | | | | | USGS TMDL
At Beasley Flat
VRVER064.68 | 1999 - 1 suite | Turbidity
NTU | 50
(A&Ww) | 77 | 1 of 1 | | | |
 Reach Summary Row A&Ww Inconclusive | 1999 - 2000
9 samples | Escherichia coli
CFU/100 ml | 580
(FBC) | <2∙ 1,125 | 1 of 9 | Inconclusive | ADEQ and USGS collected a total of 9 samples at 2 sites 1999-2000. Reach assessed as "attaining some uses" and | | | FC Attaining FBC Inconclusive Agl Attaining AgL Attaining | | Turbidity
NTU | 50
(A&Ww) | 1-998 | 4 of 9 | Inconclusive | added to the Planning List due to E. coll and turbidity exceedances. | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | S | STANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING | EVENT | |---|--|---|----------------------------------|---------------------------------|-------------------------------|-----------------------------------|-----------------------------------|--| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | Verde River
Tangle Creek-Ister Flat
AZ15060203-018 | USGS
Station #09508500
Below Tangle Creek | 1996 - 8 suites
1997 - 15 suites
1998 - 6 suites | Escherichia coli
CFU/100 mg/L | 580
(FBC) | <1.0-770 | 1 of 13 | | | | A&Ww, FC, FBC, AgI, AgL | VRVER036.48
100740 | 1999 - 6 suites
2000 - 4 suites | Turbidity
NTU | 50
(A&Ww) | 0.3-170 | 4 of 14 | | | | | SRP
Routine Monitoring
Below Tangle Creek | 2000 - 11 suites | ОК | | | | | Missing core parameters: bacteria, nutrients, nitrates, turbidity, dissolved oxygen, flow, some metals, beryllium, fluoride, barium, boron, pH. | | ADEQ Biocriteria Program
Above Sheep Bridge
VRVER036.65
100678 | 1999 - 1 suite | ОК | | | | | Missing core parameters: bacteria | | | | Reach Summary Row A&Ww Inconclusive FC Attaining | 1996 - 2000
51 sampling events | Escherichis coli
CFU/100 mg/L | 580
(FBC) | <1.0-770 | 1 of 13 | Attaining | ADEQ, USGS, and SRP collected a total of
105 samples in 1996-2000 at 4 sites.
Reach is assessed as "attaining some
uses" and added to the Planning List due | | | FBC Attaining DWS Attaining Agl Attaining AgL Attaining | and a region | Turbidity
NTU | 50
(A&Ww) | 0.3-170 | 4 of 15 | Inconclusive | to turbidity exceedances. | | Verde River
Horseshoe Lake-Bartlett Lake
AZ15060203-008
A&Ww, FC, FBC, AgI, AgL | ADEQ
Fixed Station Monitoring
Below Horseshoe Lake
VEVER027.54
100831 | 1999 - 1 suite | OK . | | | | | | | | Reach Summary Row | 1999
1 sampling event | ОК | | | | Not assessed | Insufficient samples to assess. | | Verde River
Bartlett Dam-Camp Creek
AZ15060203-004
A&Ww, FC, FBC, DWS, AgI,
AgL | SRP
Routine Monitoring
Below Bartlett Dam
VRVER017.55 | 1996 - 12 suites
1997 - 12 suites
1998 - 7 suites
1999 - 13 suites
2000 - 12 suites | ОК | | | | | Missing core parameters: bacteria, flow, fluoride, barium, beryllium, some metals, pH, dissolved oxygen, turbidity. | | | USGS
Station #09510000
Below Bartlett Dam
100741 | 1999 - 3 suites
2000 - 6 suites | ОК | | | | | Missing core parameters: bacteria | | | Reach Summary Row A&Ww Attaining FC Attaining FBC Inconclusive DWS Attaining Agl Attaining AgL Attaining | 1996 - 2000
65 sampling events
Missing bacteria
samples | ок | | | | Attaining | ADEQ, USGS, and SRP collected a total of 105 samples in 1996-2000 at 4 sites. Reach is assessed as "attaining some uses" and added to the Planning List due to missing bacteria samples. | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | | | TANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING I | EVENT | |--|--|--|--------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|---| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | Walnut Creek
Apache Creek-Big Chino Wash
AZ15060201-017
A&Ww, FC, FBC, Agl, AgL | ADEQ Biocriteria Program
Above Road 95
VRWAL011.07
100681 | 1996 - 1 suite | ОК | | | al | | Need more data to assess. Staff documented that low dissolved oxygen was due to ground water upwelling that is naturally low in dissolved oxygen; therefore, not considered in the final assessment. | | | Reach Summary Row | 1996
1 sampling event | ок | | | | Not assessed | Insufficient data to assess. | | Webber Creek
headwaters-East Verde River
AZ15060203-058
A&Wc, FC, FBC, AgL | ADEQ Biocriteria Program
Below Geronimo Scout Camp
VRWEB006.03
100690 | 1996 - 1 suite
1997 - 1 suite | ОК | | | | | Need more data to assess. | | | Reach Summary Row A&Wc Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive | 1999-1997
2 sampling events | ок | | | | Inconclusive | ADEQ collected 2 samples in 1996-1997.
Reach assessed as "inconclusive" and
added to the Planning List due to lack of
sampling events. | | West Clear Creek
headwaters-Verde River
AZ15060203-026
A&Wc, FC, FBC, AgL | ADEQ Stream Ecosystem
Above diversion
VRWCL000.94
100200 | 1997 - 1 suite | Turbidity
NTU | 10
(A&Wc) | 24 | 1 of 1 | | Missing core parameters: bacterial samples | | | ADEQ Stream Ecosystem
above lower campground
VRWCL002.66
100201 | 1997 - 1 suite | ОК . | | | | | Missing core parameters: bacterial samples | | | ADEQ Biocriteria Program
At campground
VRWCL002.91
100689 | 1996 - 1 suite
1999 - 1 suite | ОК | | | | | Missing core parameters: bacterial samples | | | ADEQ Stream Ecosystem
SW of Cactus Mountain
VRWCL003.19
100202 | 1997 - 1 suite | ОК | | | | | Missing core parameters: bacterial samples | | | ADEQ Stream Ecosystem
Below Bull Pen Ranch
VRWCL004.93
100203 | 1997 - 1 suite | ОК | | | | | Missing core parameters: bacterial sample: | | | USGS
#09505800
Near Camp Verde
VRWCL005.79
100749 | 1996 - 8 suites
1997 - 12 suites
1998 - 16 suites
1999 - 12 suites
2000 - 6 suites | | | | | | Missing core parameters: turbidity, nitroger most metals, bacterial samples. | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | S | TANDARDS EXCI | EEDED AT THIS SIT | TE PER SAMPLING | EVENT | |---|--|--|--------------------------|-----------------------------------|-------------------------------|-----------------------------------|---------------------------|---| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | ADEQ Biocriterla Program
Above Bull Pen Ranch
VRWCL006.09
100204 | 1997 - 1 suite
1998 - 1 suite
1999 - 1 suite | ок , | | | | | Missing core parameters: bacterial samples | | | ADEQ Biocriteria Program
At Callaway Butte
VRWCL012.50
100687 | 1996 - 1 suite | ок | | | | | Missing core parameters: bacterial samples | | | ADEQ Biocriteria Program
At Maxwell Trail (upper)
VRWCL0016.84
100205 | 1996 - 1 suite
1997 - 2 suites | Dissolved oxygen
mg/L | 7.0
(90% saturation)
(A&Wc) | 5.9 - 8.1 | 1 of 3 | | Natural low dissolved oxygen due to ground water upwelling and low flow. This exceedance was not included in the final assessment. Missing core parameters: bacteria. | | | Reach Summary Row A&Wc Attaining FC Attaining FBC Inconclusive AgL Attaining | 1996-2000
66 samples
58 sampling events
Missing core
parameters | Turbidity
(NTU) | 10
(A&Wc) | 1-24 | 1 of 12 | Attaining | ADEQ and USGS collected a total of 66 samples at 7 site in 1996-2000. Reach assessed as "attaining some uses" and added to the Planning List due to lack of bacteria samples. | | West Fork Oak Creek
headwaters-Oak Creek
AZ15060202-020
A&Wc, FC, FBC, AgL | ADEQ Biocriteria Program
Above Fourth Trail Crossing
VRWOK000.84
100693 | 1996 - 1 suite
1998 - 1 suite | ок | | | | | | | | Reach Summary Row A&Wc Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive | 1996-1998
2 sampling events | ок | | | | Inconclusive | ADEQ collected 2 samples in 1998-1998. Reach assessed as"inconclusive" and added to the Planning List due to insufficient sampling events. | | Wet Beaver Creek
Long
Canyon-Rarick
AZ15060202-004
A&Wc, FC, FBC, AgI, AgL | ADEQ TMDL Program
At Montezuma Well
VRWBV003,18 | 1999 - 1 field, nutrients,
turbidity
2000 - 2 field, nutrients,
turbidity | ок | | | | | Missing core parameters | | | ADEQ TMDL Program
At camp ground
VRBEV004.95 | 1999 - 1 field, nutrients,
turbidity
2000 - 2 field, nutrients,
turbidity | Dissolved oxygen mg/L | 7.0
(90% saturation)
(A&Wc) | 6.7-9.4
(86.9-93.3%) | 1 of 3 | | Missing core parameters | | | ADEQ Biocriteria Program
At campground
VRWBV005.06
100684 | 1999 - 1 suite | ОК | | | | | Missing core parameters: bacteria. | | | ADEQ Biocriteria &TMDL
Above USGS gage at Rimrock
VRWBV006.79
100765 | 1998 - 1 suite
1999 - 1 suite
2000 - 2 field, nutrients,
turbidity | Dissolved oxygen mg/L | 7.0
(90% saturation)
(A&Wc) | 6.65
(75.2%) | 1 of 1 | | Missing core parameters: no bacterial samples, only 1 beryllium, boron, manganese, chromium, zinc, mercury, arsenic, lead. | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | | |---|---|--|--|--------------------------------------|----------------------------------|-----------------------------------|---------------------------|---|--| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | | Reach Summary Row A&Wc Inconclusive FC Inconclusive FBC Inconclusive AgI Inconclusive AgL Inconclusive | 1998 - 2000 11 samples 4 sampling events Missing core parameters | Dissolved oxygen mg/L | 7.0
(90%
saturation)
(A&Wc) | 6.65-9. <i>A</i>
(75.2 -101%) | 1 of 11 | Attaining | ADEQ collected a total of 11 samples at 5 sites in 1998-2000. Reach assessed as "Inconclusive" due to insufficient core parametric coverage | | | Wet Bottom Creek
headwaters-Verde River
AZ15060203-020
A&Ww, FC, FBC, AgI, AgL | USGS
Station #09508300
Near Childs
VRWET000.94
100777 | 1996 - 2 field | OK | | | | | Not perennial stream flow | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive FBC Inconclusive AgL Inconclusive | 1996
2 sampling events | ок | | | | inconclusive | USGS collected 2 field samples in 1996.
Reach assessed as "inconclusive" due to
insufficient sampling events and core
parametric coverage. | | | LAKE MONITORING DA | ATA | | | | | | | | | | Bartlett Lake AZL15060203-0110 A&Ww, FC, FBC, DWS, AgI, AgL | ADEQ
Lakes Program
VRBAR-A
100009 | 1996 - 1 suite
1997 - 3 suites
1998 - 4 suites
1999 - 2 suites
2000 - 1 suite, 1 field | ОК | | | | | Missing core parameters: bacteria | | | | ADEQ
Lakes Program
VRBAR-B
100010 | 1996 - 2 field
1997 - 2 suites
1998 - 3 suites
1999 - 1 suite, 1 field
2000 - 1 field | Dissolved oxygen mg/L | 6.0 (90%
saturation)
(A&Ww) | 5.7-12.2
(63-130%) | 1 of 8 | | | | | | ADEQ
Lakes Program
VRBAR-C
100011 | 1996 - 1 suite
1997 - 2 suites
1998 - 3 suites
1999 - 4 suites
2000 - 2 suites | Dissolved oxygen mg/L | 6.0 (90%
saturation)
(A&Ww) | 4.9-11.5 | 1 of 7 | | | | | | | | Turbidity
NTU | 25
(A&Ww) | 3-28 | 1 of 7 | | This turbidity exceedance was due to an
upstream dam release; therefore, it is
excluded in the final assessment (R18-11-
118). | | | | ADEQ
Lakes Program
VRBAR-NTU1
100980 | 1999 - 1 turbidity | ок . | | | | | Missing core parameters: bacteria. | | | | ADEQ
Lakes Program
VRBAR-NTU2
100981 | 1999 - 1 turbidity | ОК | | | | | | | | | ADEQ
Lakes Program
VRBAR-NTU3
100982 | 1999 - 2 field, turbidity
2000 - 2 suites | ОК | | | | | | | | STREAM NAME | AGENCY | YEAR SAMPLED | I | e | TANDADDS EVO | EDED AT THIS SE | TE DED SAMDI ING E | EVENT | | |---|--|---|--|---|--------------------------------|-----------------------------------|---------------------------|--|--| | SEGMENT
SEGMENT
WATERBODY ID
DESIGNATED USES | PROGRAM
SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | NUMBER AND
TYPE OF SAMPLES | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | | | | | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | | ADEQ
Lakes Program
VRBAR-NTU4
100983 | 1999 - 2 field, 3 turbidity
2000 - 1 suite | ОК | | | | | | | | | ADEQ
Lakes Program
VRBAR-NTU5
100984 | 1999 - 1 field | ОК | | | | | | | | | Reach Summary Row A&Ww Attaining FC Attaining FBC Inconclusive DWS Attaining Agl Attaining AgL Attaining | 1996-2000 44 samples , 12 sampling events Missing core parameters | Dissolved
oxygen
mg/L | 8.0 (90%
saturation)
(A&Ww) | 5.68-12.19 | 2 of 29 | Attaining | ADEQ collected at total of 44 samples at 8 sites in 1996-2000. Lake is assessed as "attaining some uses" and added to the Planning List due to missing core parameters (bacteria). | | | Granite Basin Lake
AZL15060202-0580
A&Ww, FC, FBC, AgI, AgL | ADEQ
Lakes Program
VRGBL - A
100024 | 1997 - 4 suites
1999 - 3 suites
2000 - 1 suite | Arsenic (total)
µg/L | 50
(FBC) | <10-69 | 1 of 7 | | Median result of samples on the date with a recorded exceedance was <10 (not exceeding standard); therefore, exceedance was not included in the final assessment. | | | | | | Dissolved oxygen mg/L | 6.0 (90%
saturation)
(A&Ww) | 4.25-15.45
(49%-159%) | 3 of 7 | | Depth for lead was 1.75 meters. | | | | | | Lead (total)
µg/L | 100 (AgL)
10,000 (AgI) | 5-23,000 | 1 of 8 | | Median result of all samples on the date with
a recorded exceedance was <10; therefore,
exceedance was not included in the final
assessment. | | | | | | Manganese
µg/L | 10, 000
(Agi) | <50-12,000 | 1 of 8 | | Median result of all samples on the date with
a recorded exceedance was <10; therefore,
exceedance was not included in the final
assessment. | | | | ADEQ
Lakes Program
VRGBL - B | 1999 - 3 suites
2000 - 1 suite | Dissolved oxygen mg/L | 6.0 (90%
saturation)
(A&Ww) | 3.14-10.24
(45%-
127.5%) | 1 of 3 | | | | | | 100025 | | pH (high)
SU | 6.5-9.0
(A&Ww, FBC,
AgL)
4.5-9.0 (AgI) | 7.1-9.5 | 1 of 4 | | | | | | Reach Summary Row A&Ww Inconclusive FC Attaining FBC Inconclusive Agl Inconclusive AgL Inconclusive | 1997-2000
8 sampling events | Dissolved
oxygen
mg/L | 6.0 (90%
saturation)
(A&Ww) | 4.25-15.45
(49%-159%) | 3 of 7 | Inconclusive | ADEQ collected a total of 8 samples at 2
sites in 1997-2000. Lake assessed as
"attaining some uses" and added to the | | | | | Missing core parameters | pH (high)
SU | 6.5-9.0
(A&Ww, FBC,
AgL)
4.5-9.0 (AgI) | 7.1-9.5 | 1 of 8 | Inconclusive | Planning List due to exceedances of
dissolved oxygen and pH and insufficient
parametric coverage (beryllium, turbidity,
bacteria) | | | Green Valley Lake
AZL15060203-0015
A&Ww, FC, PBC | AGFD
Routine Monitoring
VRGRE - site 1 | 1997 - 1 field and
nutrients | pH (high) .
SU | >6.5-<9.0
(A&Ww, PBC) | 9.46 | 1 of 1 | | | | | | AGFD
Routine Monitoring
VRGRE - site 2 | 1997 - 1 field and
nutrients | pH (high)
SU | >6.5-<9.0
(A&Ww, PBC) | 9.45 | 1 of 1 | | | | | STREAM NAME
SEGMENT
WATERBODY ID | AGENCY PROGRAM SITE DESCRIPTION SITE CODE ADEQ DATABASE ID | YEAR SAMPLED
NUMBER AND
TYPE OF SAMPLES | STANDARDS EXCEEDED AT THIS SITE PER SAMPLING EVENT | | | | | | | |--|---|--|--|-------------------------------------|-------------------------------|-----------------------------------|---------------------------------|--|--| | DESIGNATED USES | | | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | | Reach Summary Row A&Ww Inconclusive FC Inconclusive PBC Inconclusive | 1997 2 samples 1 sampling event | pH (high)
SU | >6.5~9.0
(A&Ww, PBC) | 9.45-9.46 | 2 of 2 | Inconclusive | AGFD collected a total of 2 field samples at 2 sites in 1997. Lake assessed as "inconclusive" and added to the Planning List due to pH exceedance, lack of sampling events, and core parameters. | | | Horseshoe Reservoir
AZL15060203-0620
A&Ww, FC, FBC, AgI, AgL |
ADEQ
Clean Lakes Program
VRHSR | 1997 - 1 suite | Dissolved oxygen mg/L | 6.0 (90%
saturation)
(A&Ww) | 5.73-5.86
(62.7-65.8%) | 1 of 1 | | | | | | Reach Summary Row A&Ww Inconclusive FBC Inconclusive FC Inconclusive AgI Inconclusive AgL Inconclusive | 1997
1 sampling event | Dissolved
oxygen
mg/L | 6.0 (90%
saturation)
(A&VVw) | 5.73-5.86
(62.7-65.6%) | 1 of 1 | Inconclusive | Lake assessed as "Inconclusive" and added to the Planning List due to low dissolved oxygen. | | | Pecks Lake
AZL15060202-1060
A&Wc, FC, FBC, Agl, AgL | ADEQ
Lakes Program
VRPEC-A
100063 | 1997 - 4 suites
1999 - 3 suites
2000 - 2 suites | Dissolved oxygen mg/L | 7.0 (90%
saturation)
(A&Wc) | 4.0-11.7 | 3 of 8 | | Missing core parameters: bacteria | | | | | | Mercury (total)
µg/L | 0.8
(FC) | <0.5-0.9 | 1 of 8 | | Median result did not exceed standard. | | | | | | pH (high)
SU | 6.5-9.0
(A&Wc, FBC,
Agl) | 6.8-9.7 | 2 of 8 | | | | | | ADEQ Lakes Program
VRPEC-AA
100511 | 1999 - 1 suite
2000 - 1 suite | Dissolved oxygen mg/L | 7.0 (90%
saturation)
(A&Wc) | 2.03 - 8.26
(18-85% set.) | 1 of 2 | | Missing core parameters: bacteria | | | | ADEQ Lakes Program
VRPEC-F
1005113 | 1999 - 2 suites | OK | | | | | | | | | Reach Summary Row A&Wc Not attaining FC Attaining FBC Inconclusive Agi Attaining AgL Attaining | italining 12 sampling events ing clusive Missing core parameters | Dissolved
oxygen
mg/L | 7.0 (90%
saturation)
(A&Wc) | 2-11.7 | 4 of 12 | Not attaining | ADEQ collected a total of 12 samples at 3 sites in 1997-2000. Reach assessed as "not attaining" due to EPA approval of a DO and pH TMDL in 2000. Added to Planning List to evaluate the effectiveness of TMDL implementation strategies. | | | | | | pH (high)
SU | 6.5-9.0
(A&Wc, FBC,
Agi) | 6.8-9.7 | 2 of 12 | Attaining
(TMDL
approved) | | | | Stehr Lake
AZL15060203-1480
A&Ww, FC, FBC, AgL | ADEQ Lakes Program
VRSTH-A
100085 | 1996 - 1 suite
1997 - 3 suites | ОК | | | | | Missing core parameters: bacteria, nitrogen | | | | Reach Summary Row A&Ww Inconclusive FC Attaining FBC Inconclusive AgL Attaining | 1996-1997 4 sampling events Missing core parameters | ОК | | | | Attaining | ADEQ collected a total of 3 samples in 1997. Lake assessed as "attaining some uses" due to missing core parameters. | | | Stoneman Lake
AZL15060202-1490
A&Wc, FC, FBC, Agl, AgL | ADEQ
Lakes Program | 1996 - 1 suite
1997 - 3 suites
1999 - 4 suites | Dissolved oxygen mg/L | 7.0
(90% saturation)
(A&Wc) | 4.5-13.9
(62.7-106%) | 1 of 8 | | Missing core parameters: bacteria | | | | VRSTN-A
100086 | | pH
SU | 6.5-9.0
(A&Wc, FBC, AgI,
AgL) | 6.82-9.9 | 3 of 7 | | | | | STREAM NAME
SEGMENT | AGENCY
PROGRAM | YEAR SAMPLED
NUMBER AND | | S | TANDARDS EXC | EEDED AT THIS SI | TE PER SAMPLING | EVENT | | |---|--|---|-----------------------------|---|-------------------------------------|-----------------------------------|---------------------------------|--|---| | WATERBODY ID
DESIGNATED USES | SITE DESCRIPTION
SITE CODE
ADEQ DATABASE ID | TYPE OF SAMPLES | PARAMETER
UNITS | STANDARD
(DESIGNATED
USE) | RANGE OF
RESULTS
(MEAN) | FREQUENCY
EXCEEDED
STANDARD | DESIGNATED
USE SUPPORT | COMMENTS | | | | ADEQ
Lakes Program
VRSTN-B | 1999 - 3 suites | Dissolved oxygen mg/L | 7.0
(90% saturation)
(A&Wc) | 6.7
(82%) | 1 of 3 | | May be naturally low dissolved oxygen due to ground water recharge. | | | | 100698 | | pH
SU | 6,5-9.0
(A&Wc, FBC, AgI,
AgL) | 8.81 - 9.62 | 1 of 3 | | Missing core parameters: bacteria | | | | Reach Summary Row A&Wc Not attaining FC Attaining | 1996-1999
8 sampling events
(Sample results were
combined due to close | Dissolved
oxygen
mg/L | 7.0
(90%
saturation)
(A&Wc) | 4.5-13.9
(85-106%) | 1 of 8 | Not attaining | ADEQ collected a total of 8 samples at 2 sites in 1996-1999. Lake assessed as "not attaining" due to dissolved oxygen, pH, narrative nutrient TMDL completed 2000. | | | | FBC Not attaining AgI Not attaining AgL Not attaining | FBC Not attaining Agi Not attaining Missing core | Missing core | pH
SU | 6.5-9.0
(A&Wc, FBC, AgI,
AgL) | 8.8 - 9.6 | 3 of 7 | Not attaining | Add to Planning list to assess the effectiveness of TMDL implementation strategies and missing core parameters. | | Sullivan Lake
AZL15060202-3370
A&Ww, FC, FBC, AgI, AgL | ADEQ Clean Lakes Program
VRSUL-A
100088 | 1997 - 3 suites | pH (high)
SU | >6.5-<9.0
(A&Ww, FBC,
Agl, AgL) | 8.4-9.7 | 1 of 3 | | Lake is silted to top of dam. Missing core parameters: nutrients, bacteria, beryllium | | | | Reach Summary Row A&Ww Inconclusive FC Attaining FBC Inconclusive Agl Attaining AgL Attaining | 1997
3 samples | pH (high)
SU | >6.5-<9.0
(A&Ww, FBC,
Agl, AgL) | 8.4-9.7 | 1 of 3 | Inconclusive | ADEQ collected a total of 3 samples in 1997. Lake assessed as "attaining som uses"and added to the Planning List duto pH exceedance and missing core parameters. | | | Whitehorse Lake
AZL15060202-1630
A&Wc, FC, FBC, DWS, Agl, AgL | ADEQ
Lakes Program
VRWHH - A
100090 | 1997 - 4 suites
1999 - 2 suites
2000 - 3 suites | Dissolved oxygen mg/L | >7.0 (90%
saturation)
(A&Wc) | 0.59-10.4
(0.06-145%) | 4 of 8 | | Missing core parameters: bacteria | | | | | | pH
SU | 6.5-9.0 (A&Wc,
FBC, AgL)
4.5-9.0 (AgI)
5.0-9.0 (DWS) | 6.15-9.6
(7.0) | 2 of 9
1 of 9
1 of 9 | | | | | | | | Turbidity
NTU | 10
(A&Wc) | 39 | 8 of 8 | | Laboratory values used instead of field results | | | | ADEQ
Lakes Program
VRWHH-B
100724 | 1999 - 2 field, nutrients
2000 - 1 field | Dissolved oxygen mg/L | >7.0
(90% saturation)
(A&Wc) | 5.75-9.98
(73%-148%) | 1 of 3 | | Missing core parameters: bacteria | | | | | | pH
SU | 6.5-9.0 (A&Wc,
FBC, AgL)
4.5-9.0 (AgI)
5.0-9.0 (DWS) | 7.1-9.6 | 1 of 3
1 of 3 | | | | | | | | Turbidity
NTU | 10
(A&Wc) | 13-56 | 11 of 11 | | Laboratory values used instead of field results | | | | Reach Summary Row A&Ww Inconclusive FC Attaining FBC Inconclusive DWS Attaining Agl Attaining AgL Inconclusive | iusive ng 12 samples lusive 9 sampling events ng Missing core | Dissolved
oxygen
mg/L | >7.0 (90%
saturation)
(A&Wc) | 5.75-9.98
(73%-148%) | 5 of 11 | sites from 1997-2000. Lake is a | ADEQ collected a total of 12 samples at 2
sites from 1997-2000. Lake is assessed as
"attaining some uses" and added to the | | | | | | pH
(High) | 6.5-9.0 (A&Wc,
FBC, AgL)
4.5-9.0 (AgI)
5.0-9.0 (DWS) | 8.2-9.6 | 3 of 12
1 of 12
1 of 12 | Inconclusive | Planning List due to dissolved oxygen,
pH, and turbidity exceedances and
missing core parameters. | | | | | | Turbidity | 10 (A&Wc) | 13-56 | 11 of 11 | Inconclusive | | | Information for interpreting these Monitoring Tables #### Information for interpreting these Monitoring Tables - "Segment" designates the beginning and end points of the reach. - "Waterbody ID" is derived from combining the following: AZ (for streams) or AZL (for lakes) + a US Geological Survey Hydrologic Unit Code + EPA stream reach number or ADEQ lake number. - "Designated Uses," "Agency," and "Units" (of measurement) abbraviations are defined in Appendix A. - "Site Code" is an ADEQ derived abbreviation for the surface water basin, stream name or lake name, and the location of the site. For streams, the numbers are the miles upstream from mouth (normally measured as a straight line vector). - "ADEQ Database ID" This is ADEQ's water quality database reference number. If the data is not in this database, no number will be shown. - "Samples" -- The year and number of water samples is shown. The federal "water year" is used, from October 1st through September 30s, rather than the calendar year. Types of samples: - "Suite" indicates that a broad range of chemical constituents were collected and field measurements were taken (normally inorganics, metals, nutrients, and bacteria.) The chemical constituents monitored are not consistent among the many monitoring entities that provided the data. If the suite did not include the core parameters needed to assess a designated use as "attaining," the missing core parameters are indicated. - "Field" indicates that only field measurements such as dissolved oxygen, pH, turbidity, and water temperature were collected. - If a specific parameter or parametric group (e.g., zinc, metals, bacteria) is named, monitoring was limited to only these parameters - "Standards Exceeded at this Site per Sampling Event." - Although many parameters may be analyzed, only those exceeding a standard are shown. Other parameters were collected. - "OK" indicates that no standards were exceeded. - The specific standards are shown as a single parameter may have multiple standards depending on the designated uses assigned. (See standards in Appendix C.) - The Range of Results" indicates the minimum and maximum sample results. If the laboratory reported result is "less than the detection limit" or "not detected," a less than (<) value will be shown along with the detection limit (e.g., <0.5 mg/L). - A mean, geometric mean, or median will be shown along with the range of results if applicable to the standard or assessment criteria. - "Comments"
include other information used in interpreting the data for assessments, such as evidence that exceedance is solely due to natural conditions, or that the data does not meet the new "credible" data requirements. - In the "Summary Row" parameter exceedances are combined from multiple sites, and the assessment of each designated use is shown. The overall assessment for the surface water is described in the "Comments" field: "Attaining," "Not attaining," "Impaired," or "Inconclusive." See assessment criteria in Chapter III of Volume I. ### Ground Water Assessments in the Verde Watershed Major Ground Water Stressors -- Monitoring data collected from wells in this watershed between October 1995-October 2000 are summarized in **Table 32** and illustrated in **Figures 60, 61, and 62.** Wells are sampled for different constituents and samples were not collected uniformly across the watershed but were collected generally as part of a special study. Of the 118 wells monitored, few exceeded standards for radiochemicals, fluoride, metals, or nitrate. No wells exceeded pesticide standards although the Verde Valley has had extensive agricultural crop production. The location of the wells monitored and the wells exceeding standards is illustrated in Figure 60. Volatile organic chemicals (VOCs) exceeded standards in the Payson area. These samples were collected as part of the Superfund remediation site investigation which is described in the final section of this watershed report. TDS Concentrations — Water quality can be characterized based on concentration of Total Dissolved Solids (TDS). High levels of salinity can limit the practical uses of ground water, as TDS over 500 mg/L has an off-flavor, and TDS over 1000 mg/L will limit its use for some crops. As indicated in Table 32 and illustrated in Figure 61, TDS does not appear to be generally elevated in this watershed; however, TDS testing was concentrated in only one region. No TDS water quality standards apply in this watershed, as elevated levels of TDS do not present a human-health concern for drinking water. The TDS concentration is only used to generally characterize water quality. In the Verde Watershed, the lack of elevated TDS would indicate excellent ground water quality. Nitrate Concentrations — Water quality can also be characterized by looking at the concentration of nitrates in ground water. In Arizona, natural occurring nitrate concentrations in ground water are generally below 3 mg/L and concentrations above 5 mg/L indicate potential anthropogenic sources of nitrates. Of the 90 tested for nitrate concentration, 17 wells (19%) exceeded this level. As illustrated in Figure 62, elevated nitrates occur in the Payson area and north of Prescott. Irrigated agriculture, septic systems, and other wastewater disposal facilities are may be sources of this nitrate. When nitrate concentrations exceed 10 mg/L, Arizona's Aquifer Water Quality Standard has been exceeded. This standard was set to protect human health ,as water with nitrate greater than 10 mg/L may present a health problem for infants and should not be consumed by nursing mothers. Only two wells in the Payson area exceeded this level. As many of the wells sampled are irrigation wells (not used for drinking water), nitrates over 10 mg/L may not represent a humanhealth concern in this watershed. However, efforts should be made to minimize further contamination of ground water by nitrate. Table 32. Verde Watershed Ground Water Monitoring 1996 - 2000 | | PARAMETER OR | | NUMBER OF WELLS | DEDOCAL OF WELLO | | | |---------------------------|-------------------|---------------------------------------|-------------------|------------------------|--------------------------------------|--| | MONITORING DATA TYPE | PARAMETER GROUP | SAMPLED SYNTHETIC CONSTITUE DETECTED* | | EXCEEDING
STANDARDS | PERCENT OF WELLS EXCEEDING STANDARDS | | | INDEX WELLS | Radiochemicals | 9 | | 1 | 11% | | | | Fluoride | 41 | | 2 | 5% | | | | Metals/Metalloids | 42 | | 2 | 5% | | | | Nitrate | 42 | | 0 | 0% | | | | VOCs + SVOCs* | 2 | 1 | 0 | 0% | | | | Pesticides | 2 | 0 | 0 | 0% | | | TARGETED MONITORING WELLS | Radiochemicals | 3 | | 0 | 0% | | | | Fluoride | 17 | 张·默瑟·萨·斯 德 | 0 | 0% | | | | Metals/metalloids | 52 | 建筑的 是建筑。 | 0 | 0% | | | | Nitrate | 48 | | 2 | 4% | | | | VOCs + SVOCs* | 76 | 46 | 32 | 42% | | | | Pesticides | 75 | 0 | 0 | 0% | | | | WEL | L CLASSIFICATION BY TOTAL DISSOLVED | SOLIDS (TDS) CONCENTRATION | | |-----------------------|---|---|--|---| | Total Number of Wells | Wells <500 mg/L
Acceptable drinking water flavor | Wells 500-999 mg/L
Fresh (not saline)
Some crop production problems | Wells 1000-3000 mg/L
Slightly saline
Increasing crop production problems | Wells >3000 mg/L
Moderately saline to briny
Severe crop production problems | | 55 | 43 | 3 | 0 | . 0 | | | | WE | L CLASSIFICATION BY NITRATE CONCENTRATION (mea | sured as Nitrogen) | |-----------------------|---------------|----|---|---| | Total Number of Wells | Wells <5 mg/L | | Wells 5-10 mg/L
May be an anthropogenic source of Nitrates | >10 mg/L Exceeds standards Should not be used for drinking water by babies or nursing mothers | | 90 | | 73 | 18 | | VD - 32 Verde Watershed ^{*}VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds. *The detection of a synthetic constituent (pesticides, VOCs, and SVOCs) is noted because some do not have standards and these substances are not naturally occurring in the ground water. Figure 60. Ground Water Quality Monitoring in the Verde Watershed - 1996-2000 Figure 61. Classification of Water Quality by TDS Concentrations in the Verde Watershed Figure 62. Classification of Water Quality by Nitrate Concentrations in the Verde Watershed ### Watershed Studies and Alternative Solutions in the Verde River # **Surface Water Studies and Mitigation Projects** This section highlights surface and ground water studies, mitigation projects, and remediation activities which have been conducted to improve water quality in the Verde Watershed. Watershed partnerships active in this watershed are also described. Total Maximum Daily Load Analyses – The following TMDL analyses have been completed or are ongoing in this watershed. Further information about the status of these investigations can be obtained by contacting the TMDL Program Manager at (602) 771-4468, or at ADEQ's web site: http://www.adeq.state.az.us/environ/water/assess/tmdl.html Oak Creek and Munds Creek Nutrient TMDL – The total nitrogen and total phosphorus Total Maximum Daily Load originally established in 1987 for Oak Creek was recalculated by ADEQ, at the community's request. This TMDL was extended to include Munds Creek, a tributary to Oak Creek on the 1998 303(d) List due to nutrients and bacterial contamination. The recalculated TMDL used more sophisticated simulation models that included allowances for non-point sources. It was approved by EPA in 1999. Oak Creek flows approximately 21 miles, with a 464 square mile drainage area, dropping 2500 feet through a steep walled canyon in the upper reaches to more gently rolling hills and plateaus in the lower reaches. Oak Creek and the West Fork of Oak Creek are classified as Unique Waters, subject to more stringent antidegradation protection and surface water standards. Munds Creek, one of several perennial tributaries to Oak Creek, does not share this Unique Waters status. The Total Maximum Daily Loads for nitrogen and phosphorus in the Oak Creek and Munds Creek are: - Total Nitrogen = 440 kilograms/day (67 from point sources, 365 from nonpoint sources, and 8 as a margin of safety) - Phosphorus TMDL = 58 kg/day (13 from point sources, 43 from nonpoint sources, and 2 as a margin of safety) The primary conclusions and recommendations included in the 1999 nutrient TMDL included: - Existing monitoring data and watershed simulation of conditions in the Oak Creek system over a five-year period suggest that few nutrient standards violations occur; - Modeling results do not indicate a need to alter existing NPDES permit discharge limits; - ADEQ interprets that the surface water quality Antidegradation Rule (R18-11-107) for Unique Waters (Oak Creek and West Fork of Oak Creek) to mean no new or additional loading sources for Oak Creek, nor for any tributaries if the tributary loads affect Oak Creek; - No new nutrient limits need to be set for septic system loadings (these were simulated as point source loadings due to modeling constraints); however, special studies of septic system efficiencies and recreational impacts should be conducted; and - Oak Creek's status as a Unique Water requires a comprehensive water quality and hydrologic monitoring program of sites on the creek, major tributaries, and major springs and other ground water sources. This also includes working with the Oak Creek Flood Warning System to improve its precipitation gage network and data management system. ADEQ does not have the resources to conduct this type of monitoring by itself and encourages stakeholders to coordinate with monitoring agencies and seek grants to pay for such monitoring. - Slide Rock Pathogen TMDL The swimming area in Slide Rock State Park on Oak Creek has experience seasonal exceedances of bacterial standards since the late 1960s. In 1996, the Arizona State Parks Service began daily testing of *Escherichia coli* at Slide Rock State Park to determine when standards are being exceeded and subsequently close the swimming area to protect the public
health. A study completed in 1998 by ADEQ established that a significant sediment reservoir of bacteria becomes suspended as a result of recreation pressure and storm events. No point sources discharge upstream of Slide Rock. Possible nonpoint source contributions include recreation, improper waste disposal, septic system seepage, and storm water runoff. Attempts were made to identify whether the bacteria were originally human, domestic animal, or wildlife through DNA genotyping. Given the uncertainties inherent in the overwintering and regrowth phenomena of the bacteria and the relationship of sediment to water fecal coliform, a phase approach to load reductions is needed to meet standards. An implementation plan is being created to meet the following TMDL allocation: 30% reduction of sediment fecal coliform (i.e., reduction in summer sediment fecal coliform values to below 1,160,000 CFU/100 ml), and No exceedances of the single sample maximum Escherichia coli standard (580 CFU/100 ml) by 2002. Or if *Escherichia coli* standard is not met by 2002, the TMDL automatically is amended to the same 30% reduction in sediment fecal coliform values and meet the single sample maximum standard by 2005. Source reduction, coupled with Slide Rock State Park management practices are intended to ensure protection of public health at the park. The goal is to totally avoid swimming or full body contact exposure when *Escherichia coli* is at or above the single sample maximum. Pecks Lake pH and Dissolved Oxygen TMDL – A TMDL was completed by Tetra Tech, Inc. for ADEQ and approved by EPA in 2002. Pecks Lake, a 95 acre oxbow remnant of the Verde River, was impaired by two stressors: pH and dissolved oxygen. This TMDL focused on nutrient loading to Peck's Lake, as plant and algal productivity were tied to biological oxygen demand, availability of dissolved oxygen, and elevated pH. Nutrient loadings were also a concern as the area surrounding the lake is being developed as a residential area with 900 residences, a golf course, and commercial property. The TMDL investigation showed that the occasional pH values that exceed the surface water standard and seasonal decreases in dissolved oxygen below the standard are primarily due to the effects of weed growth (macrophytes) on Peck's Lake water quality. At times macrophytes cover about 90 percent of the lake surface and play a major role in nutrient cycling and water quality processes in the lake. Internal nutrient cycling within the lake has resulted in the buildup and breakdown of aquatic vegetation resulting in dissolved oxygen, pH, and narrative nutrient standard violations. TMDL allocations call for a "no net gain" in external nutrient loading to Peck's Lake. Internal nutrient loadings of both total phosphorus and total nitrogen need to be reduced 25% through harvesting of aquatic macrophytes and other methods. The Total Maximum Daily Load for nutrients were calculated to be: Total Nitrogen – 74.4 pounds per day Total Phosphorus – 11.15 pounds per day This loading was distributed between the following sources, with an allocation reserved for margin of safety: natural background, development, and in-lake. If the existing passive flow through the lake is determined to not be sufficient during the first 5-year phase of this TMDL, additional aeration devises may be necessary. TMDL implementation will include various strategies to minimize input from runoff and reduce internal nutrient cycling. A comprehensive and detailed monitoring plan has also been incorporated into the Storm Water Pollution Prevention Plan for the Verde Valley Ranch development. Stoneman Lake TMDLs – In 2000, EPA approved dissolved oxygen, pH, and narrative nutrient TMDLs on Stoneman Lake. The TMDL was completed by Malcolm Pirnie under contract with ADEQ. Stoneman Lake is a 120-acre natural lake with a 900 acre watershed primarily of pine forest. A 70-home development is on the eastern side of the lake. The lake is relatively shallow (less than 10 feet deep), has no surface water outlet, and is designated as a cold water fishery. The lake has historically experienced an abundant growth of submerge aquatic vegetation during the warm weather months. Generally a TMDL is allocated for critical hydrologic conditions. For Stoneman Lake this would be the lake going dry, as water quality in Stoneman lake will actually be best during wet years. Because of the impracticality of developing a TMDL for a dry lake, the TMDL was calculated for average hydrologic conditions. Within this context, the most critical season is the summer, with high temperatures and peak macrophyte growth. The nutrient Total Maximum Daily Loads for Stoneman Lake were determined to be: - ► Total Nitrogen 2,057 grams per day (40% precipitation, 28% runoff and ground water recharge, 32% septic systems) - Total Phosphorus 676 grams per day (30% precipitation, 40% runoff/ground water recharge, 15% septic systems) Dissolved oxygen standards should be met by the implementation of these nutrient loads as they are predicted to cause a 35% reduction in Biological Oxygen Demand over the growing season (from 11.9 to 7.7 mg/liter per day). Summer pH are also predicted to attain surface water quality standards based on the predicted 35% reduction in biomass density (from 410 to 258 grams of dry weight per cubic meter) with the implementation of this nutrient TMDL. Monitoring may demonstrate a need to create a site-specific seasonal pH criterion, as high natural pH is characteristic of shallow, high elevation lakes in Arizona. The Stoneman Lake TMDL suggested and compared the costs and benefits of seven alternatives to bringing about the necessary reduction in loads. Of the seven alternatives, one is predicted to provide significant water quality benefits at a moderate cost: reopen a ditch to increase water flow into the lake by one-third, thereby helping to maintain higher average lake levels. However, reopening the CCC ditch will likely take 2-3 years, if it occurs. Meantime, increased monitoring will better define expectations for the system in the absence of the ditch water, and if the ditch cannot be reopened, this new data will be used to evaluate the need to set site-specific standards for pH, dissolved oxygen and narrative nutrients or revise designated uses. Verde River Turbidity TMDL — A turbidity TMDL for the Verde River was approved by EPA in May 2002. The Verde River is a perennial stream approximately 156 miles long. Three segments of the Verde River are listed as impaired due to turbidity in the upper section of this river between Perkinsville and Camp Verde. A massive sampling effort was undertaken in October and December of 1999, collecting one hundred and eighty turbidity readings from above Perkinsville to Camp Verde. All turbidity values observed were below the 50 NTU Aquatic and Wildlife warm-water standard; however, these turbidity readings were taken during relatively low flows and not following a storm event. Natural levels for sediment are believed to be significant inputs into the Verde River, but have been accelerated due to anthropogenic influences. Load allocations and reduction targets were identified in the TMDL. Turbidity impairment appears to be directly correlated to large storm events, and no load reduction is necessary during average base flow conditions (when exceedances do not occur). The Target Load Capacity for the Verde River during the critical storm flows was calculated to be 731,793 pounds per day as Total Suspended Solids (TSS), while the measured load was estimated to be 964,694 pounds per day as TSS. Therefore the Load Reduction necessary is the difference: 232,901 pounds per day as TSS. A variety of Best Management Practices have been identified as part of the implementation plan to reduce sediment loading to the Verde River. Some of the implementation strategies include: - Improve livestock management practices within the Verde Watershed. - Designate off-highway vehicle areas and employ Best Management Practices at these sites. Enforce off-road travel regulations, educate the public, and close or obliterate unneeded roads. - Reduce impacts from dispersed recreation through implementation of the "Red Rock Passport," a comprehensive recreation plan for the Sedona area. Recreational opportunities have been limited on some heavily used areas to help reduce soil compaction and erosion from these activities. - Grassland restoration projects have been implemented to reduce pinyon and juniper densities and increase vegetative ground cover. This should increase infiltration and reduce soil erosion. - The US Forest Service, Verde Watershed Association, and Verde Natural Resources Conservation District continue to sponsor educational opportunities and public involvement in decisions regarding long-term management of this resource. - The US Forest Service, Verde River Greenway and the Nature Conservancy have been acquiring land adjacent to the Verde River through land exchanges and purchasing to reduce development in the active flood plain. - Prescribed fire treatments are being implemented to reduce adverse watershed effects from uncontrolled wildfire. - Maintenance and modifications to silted in water catchment structures (such as cattle tanks and Sullivan Lake Dam) will reduce the amounts of fine sediments being brought into the river system. It may take at least 10 years to see the effectiveness of implemented TMDL strategies. US EPA recognizes that sediment TMDLs with primarily non-point sources of pollution can be difficult to manage, and that these problems have been created over generations and may require as long to correct. Beaver Creek and Wet Beaver Creek TMDL Studies – ADEQ collected samples and investigated potential sources of turbidity on Beaver and Wet Beaver creeks and low dissolved oxygen on Beaver Creek in 1999-2000. The low dissolved oxygen was determined to be naturally occurring due to ground water
upwelling, as ground water naturally contains very low levels of dissolved oxygen. No turbidity exceedances occurred on Wet Beaver Creek out of 11 samples. Based on these investigations, ADEQ is recommending delisting Beaver Creek for low dissolved oxygen and Wet Beaver Creek for turbidity. However, the turbidity TMDL investigation of sources and loadings is ongoing in Beaver Creek. ADEQ is currently working with the US Forest Service to look at recent and potential improvements in rangeland and recreation management in this drainage area. **Draft Verde River Assimilative Capacity Data Summary Report** – Significant population growth is projected for some portions of the Verde Watershed, and this growth will increase the nutrient loads from runoff, septic systems, and proposed new or expanded waste water discharges. ADEQ contracted with Tetra Tech, Inc. to provide technical support for an assimilative capacity study. If the assimilative capacity of the river is anticipated to be exceeded with the addition of the proposed new point sources and secondary impacts from increased population, a Total Maximum Daily Load (TMDL) will need to be developed to allocate the available assimilative capacity and ensure that the river continues to support its designated uses. This data summary report catalogues, evaluates, and assesses the existing data and information about nutrient loadings in the Verde River. This will provide the information needed to select an appropriate water quality model. This report provides a summary of existing sources of data, standards, potential sources of nutrient loads in the watershed, a possible conceptual model, and remaining data gaps. Water Quality Improvement Grants - ADEQ awarded the following Water Quality Improvement Grants in this watershed: Northern Arizona University On-site Wastewater Demonstration Project This on-going project began in 1997. This project involves the construction of four different alternative on-site wastewater treatment technologies on the Norther Arizona University campus using married student housing wastewater effluent. The treatment options are linked to a system that controls operations and monitors and relays wastewater treatment parameters. The project utilizes the teaching and student staff of the Civil Engineering Department. Training for on-site professionals is conducted at the demonstration site and the teaching pavilion as well as at alternate locations such as Maricopa and Pima County. The project will demonstrate the design and treatment options of site conditions typical to northern Arizona which are challenging situations of shallow clay soils over rock Research and product approval options are also available at the site. Oak Creek Pollution Prevention Project – The project addresses the bacterial contamination in Oak Creek that may be contributed by failing septic system (see prior discussion of Oak Creek's pathogen TMDL). In 1998, Coconino County received funds to partner with property owners and upgrade 8-10 existing failed or substandard onsite wastewater treatment systems along Oak Creek. The project will monitor and evaluate the performance of these installations for one year. The project also has a strong community education outreach component to increase the knowledge and cooperation of the public regarding on-site wastewater treatment and pollution prevention using a website, workshops, and formation of a Technical Advisory Committee for wastewater permitting issues. - Northern Arizona University Oak Creek Sampling and Escherichia coli DNA Genotyping Project Under the direction of the NAU Department of Environmental Microbiology, Escherichia coli samples were collected in water and sediment at five sites along Oak Creek Canyon. This study was designed to further characterize the existing bacterial problem in Oak Creek Canyon (see Slide Rock pathogen TMDL study above). Fecal material from potential mammal populations in the subwatershed were also sampled to develop Escherichia coli genotypes. The report identifies the type and relative proportion of fecal pollution in Oak Creek, identifying contributions from human, cattle, dog, elk, deer, horse, mountain lion, racoon skunk beaver, antelope, bear and llama. - Oak Creek Water Quality Guardian Project This project is a cooperative effort with local property owners (homeowner associations), Coconino County Environmental Health Department and Groundwater Guardian affiliates to upgrade up to 10 old and potentially failing on-site septic systems from along high risk or susceptible area along Oak Creek. (See Oak Creek nutrient TMDL and Slide Rock pathogen TMDL described above.) The project principal, Canyon Services, has also mapped some of the areas' susceptible and challenging soil conditions. After upgrades are completed, the systems will be monitored for bacteria and phosphorus. - Oak Creek Water Quality Guardian Sediment Project In 1999, Circle C Engineering received funds to evaluate the effectiveness of using sediment traps in reducing bacterial pollution in Oak Creek (see Slide Rock pathogen TMDL). Erosion control sediment traps were placed at four strategic locations and monitored during storm events to provide data about transportation of fecal material in Oak Creek and the effectiveness of sediment traps. The project is a cooperative effort between Forest Service, State Parks, and citizens. - Stoneman Lake Guardian Project Circle C Engineering, a Groundwater Guardian affiliate, was awarded funds to upgrade septic systems, address grey water disposal, and provide sediment traps. A Groundwater Guardian newsletter was published to educate the public on the grant objectives and opportunities to participate in the seven septic upgrades and grey water systems. Monitoring for nitrate and orthophosphate will occur below the sediment traps and in washes and culverts during storm events to assess incoming loads to the lake. (See Stoneman Lake TMDL discussed above.) Cornville Watershed Project – A grant was awarded to the Yavapai County Flood Control District and local residents to revegetate a storm water detention pond using solar power to establish native grasses and shrubs to reduce sediment causing turbidity in Oak Creek. The project also used cattle to restabilize erosion gullies at the pond site. The site will be used for educational programs with local schools, and nearby Cornville Park. Workshops, educational materials, website and news releases are part of a strong community outreach component of this project. Water Protection Fund Projects – The following projects received Water Protection Funds from the Arizona Department of Water Resources: - Stable Isotope Assessment of Ground and Surface Water Interaction Between Chino Valley and the Verde River Arizona State University was awarded funds to sample surface and ground water in the Chino Valley, and to analyzed the waters for naturally occurring stable isotopes of hydrogen and oxygen. The main goal of the study was to determine if a hydraulic connection exists between the aquifers of the Chino Valley and the Verde River. This information would assist in determining the effects, if any, of ground water pumping within the Chino Valley on the flow in the upper Verde River. The study was completed in 1997. - Sycamore Creek Riparian Management Area Project The Tonto National Forest was funded to restore and protect a 19-mile reach of Sycamore Creek (a major tributary of the Verde River) from uncontrolled livestock grazing and off-road vehicle use. To stop further damage to the creek from uncontrolled livestock grazing and off-road vehicle use, 15 miles of fence were constructed to enclose the riparian corridor. The objective is to increase the canopy cover and density of riparian vegetation within the corridor. The project was completed in 1999. - Road Reclamation to Improve Riparian Habitat Along the Hassayampa and Verde Rivers The Prescott National Forest received a grant for a three-year project that should result in closure and revegetation of almost 20 miles of roads adjacent to the Hassayampa and Verde rivers. The goal of the project is to reduce erosion and sedimentation into the rivers, restore riparian and upland vegetation on the closed and reclaimed road surfaces, and eliminate unauthorized roads. The project was completed in 1999. - Riparian Habitat Restoration Along a Perennial Reach of a Verde River Tributary Northern Arizona University received funds for a three-year project to restore habitat critical to the successful regeneration of a Bebb willow-mixed graminoid riparian plant community. The project site is in the area of Hart Prairie (northwest of Flagstaff) on a tributary to Sycamore Creek. The project involves removing an existing surface water diversion, restoring the natural drainage channel, fencing critical areas, and monitoring vegetation response to hydrologic changes. The project was completed in 1999. - Restoration of Fossil Creek Riparian Ecosystem Rocky Mountain Research Station in Flagstaff was awarded a grant to determine the potential effects that a proposed reestablishment of part or all of the presently diverted flows of Fossil Creek could have on reestablishing riparian vegetation along the stream's corridor. The project was to compare and contrast historical vegetation with present vegetation to determine the consequences of adding additional water into the creek. The stream has been de-watered for almost 80 years by the diversions for hydroelectric use, but may receive some of all of this water within the next few years. The project was completed in 1999. - Watson Woods Vegetation Inventory The Prescott Creeks Preservation Association completed a vegetation inventory of Watson Woods in 1998. This inventory characterized the vegetative communities within the Watson Woods Preserve in order to describe baseline conditions at the site. This information will guide management and restoration efforts at
the preserve. - Upper Verde Adaptive Management Unit The Almida Land and Cattle Company was awarded a Watershed Protection Grant to maintain the continued health of riparian habitat along the Verde River. The company is to develop a livestock grazing system that excludes cattle from replacement facilities uplands. To achieve this, the grantee will build six miles of four-strand barbed wire fencing, construct seven miles of underground pipeline, install twelve drinkers, and two 20,000 gallon storage tanks. The project is to be completed in 2002. - Verde Riparian Action Plan The Verde Natural Resources Conservation District (NRCD) was awarded a three-year grant to dig trenches and holes for planting cottonwood and willow trees along the Verde River and its perennial tributaries. Since 1991, the Verde NRCD has maintained a riparian species nursery and each year trees are harvested and sold or planted. This project will support the NRCD Riparian Species Planting Program efforts to restore riparian habitat of the Verde River. - Horseshoe Allotment: Verde Riparian Project II George and Sharon Yard, who ranch on U.S. Forest Service land along the Verde River, were awarded a Watershed Protection Grant to create an off-river pasture through development of a currently dry pasture. This goal is to improve 3.75 miles of the Verde River by constructing pasture division fencing, river fencing, and a waterline for five cattle drinkers, three small wildlife drinkers, and two storage tanks. The project is to be completed in 2001. - Upper Verde Valley Riparian Area Historical Analysis Northern Arizona University (NAU) received funds to compare the historical riparian system of a seven-mile reach along the Verde River, with the current system to determine what changes have occurred in riparian vegetation. The grantee assessed the relationships between vegetation changes and climatic factors, human land use activities and varying ground water levels to determine which vegetation changes were caused by human activities in the watershed. Based on the results of this study, NAU made recommendations for preservation, restoration, and enhancement of riparian habitat. The project was completed in 2001. - Northern Arizona University received funds to restore the channel and riparian vegetation along 2600 feet of a perennial stream that flows in Clover Springs Valley. The proposed restoration area is located in the Coconino National Forest about 5.5 miles south of Clint's Well on Highway 87. Specific project objectives include: - Develop and implement a channel stabilization and wetland protection plan for the Clover Springs reach. This will include removal of existing channel structures, reshaping and redirecting the channel and use of low impact structures to encourage natural channel stability; - Determine the causative factors and timing of aggradation and incision in this reach through investigation of past flood plain activity, radiocarbon dating and description of sediments, tree ring dating and historic photos; - Develop an information kiosk or signs at the site to explain the role of meadow ecosystems, historic disturbances, current conditions, desired conditions, and restoration techniques. - Effects of Livestock Use on Riparian Trees on the Verde River Arizona State University is to study how various livestock use levels affect growth, survival and population dynamics of Goodding Willow and Fremont Cottonwood trees along the Verde River. Under the terms of a Biological Opinion for the Skeleton Ridge Allotment, no more that 40 percent of the meristems of these woody species may be used for grazing. This standard has been adopted by the Tonto National Forest for riparian areas with federally listed species. Anecdotal information supports this level of use but little quantitative data exists to support this standard. The project is to be completed in 2003. Rocky Mountain Research Station Verde River Watershed Research – The US Forest Service Rocky Mountain Research Station has been conducting research in or adjacent to the Verde River Watershed since establishment of the Fort Valley Experimental Forest in 1908. Twenty drainage areas were instrumented with stream gauges, precipitation gages, and other equipment. Over 700 publications have been produced from the Beaver Creek Project alone. Since 1993, research has focused on the upper Verde River and Fossil Creek, looking at fish populations, riparian vegetation, water quality, and channel geomorphology. Some of their most recent reports include: A Preliminary Analysis of Riparian Habitat Conditions of the Upper Verde River (Medina, 2001) – Several vegetation and channel surveys were conducted in 1997, 1998, and 2000 in the upper Verde River. The study site is limited to the reach between Sullivan Dan and Tapco, the eastern boundary of the Chino Ranger District. The preliminary results of these studies are presented with special emphasis on stream bank herbaceous and woody vegetation and channel conditions that might influence spikedace. The plant communities described are those found on the streambanks and not totally inclusive of the entire riparian zone. Several influences capable of affecting the functional condition of riparian habitats are discussed including channel maintenance, exotic vegetation, grazing effects, and channel conditions. - A Preliminary View of Water Quality Conditions of the Upper Verde River (Medina, 2001) In 2000, two water quality monitoring stations were installed in the upper Verde River for the purpose of monitoring common parameters such as temperature, turbidity, conductivity, pH, dissolved oxygen, and suspended sediments. The preliminary results of one year of study are reported in this paper and contrasted with data from previous surveys. - Base Flow Trends and Native Fish in the Upper Verde River (Neary and Rinne, 2001) Although much attention has been given to the effects of storm flows on native fish in Arizona's rivers, the minimum base flows are the most critical for fish survival. Because of the controversy over threatened and endangered fish such as the spikedace (Meda fulgida) in the upper Verde River, it is important to examine the recent trends in minimum base flows on this river which supports a native fish community. Base flow and trends are reported. - Role of Verde River Reservoirs on Water Quality: from Arsenic to Algae (Westerhoff et al., 2001) -- Variable climatic patterns and scheduling of reservoir releases along the Verde River impacts water quality in Horseshoe and Bartlett reservoirs, which serve as approximately one-third of the drinking water supply for the metropolitan Phoenix area. Data collected over the past five years along the Verde River from the confluence of Tangle Creek to the confluence with the Salt River was used to assess the impact of water quality in the Verde River on downstream potable drinking water facilities. The database includes arsenic, organic carbon, plus total and dissolved nitrogen and phosphorus in the Verde River and Bartlett Reservoir. In addition the database includes information on the algae occurrence in the reservoir, and the seasonal concentrations of algaeproduced taste and odor compounds. This paper discusses how water quality in the Verde River impacts downstream potable water treatment plants in terms of meeting tightening drinking water regulations and providing water that does not have un-aesthetic tastes or odors. Watershed Condition Assessment for Select Verde River 5th Code Watersheds – The Prescott National Forest assessed the watershed condition of lands from Big Chino Wash to Childs on the west side of the Verde River. The watershed assessment focused on three resource components: aquatic, riparian and soil conditions within the watershed, and related this information to designate critical habitat for spikedace (Meda fulgida) and loach minnow (Rhinichthys cobitis), two native threatened fish species. The aquatic assessment included information on water quality, macroinvertebrates, fisheries habitat, and geomorphology of the river. Verde River Corridor Project – The Verde River Corridor Project began in the fall of 1989 as a locally directed effort, sponsored by the Arizona State Parks Stream and Wetland Program, with the goals of examining all the uses and values of the Verde River corridor. The study area covers the middle stretch of the Verde River which extends approximately 55 to 60 river miles, from TAPCO (north of Clarkdale) to Beasley Flat (south of Camp Verde). The mission of the project was to identify and recognize all uses of the Verde River corridor, encourage protection of the Verde River and its natural and cultural resources, and promote coordinated decision making for the continued enjoyment and use of the Verde River by future generations. # **Ground Water Studies and Mitigation Projects** Prescott Active Management Area Baseline Study – The Prescott Active Management Area is 485 square miles, with the northern half in the Verde Watershed and the southern half in the Middle Gila Watershed. See discussion of this study in the Middle Gila Watershed section. Federal and state Superfund cleanup sites – Three Superfund and Department of Defense cleanup sites are located in this watershed. Camp Navajo – Camp Navajo (previously Navajo Depot Activity), is a WQARF site located in Bellemont, Arizona, 12 miles west of Flagstaff and 17 miles east of Williams, Arizona. This 28,347 acres facility includes 776 igloo structures for storage of conventional (and formerly chemical) munitions. There is a demolition area in the southern portion and buffer zones along the eastern and western borders of the base. Contaminants of concern include heavy metals, volatile and semi-volatile organic compounds, pesticides, and constituents of explosives. The entire site is still in the remedial investigation phase, with ADEQ collecting soil, surface water, and ground water samples to
determine the extent of contamination. The unexploded ordinance located on the surface of the open burning-open detonation range is of concern. ADEQ and the Army have agreed that surface clearance will be performed while the remedial investigation continues. Payson PCE site – In 1990, the discovery of tetrachloroethene (PCE), a solvent commonly used in dry-cleaning, in two <u>unused</u> Payson municipal wells caused the initial investigations at the WQARF site. ADEQ investigations found that PCE had impacted a number of private wells in the immediate vicinity. ADEQ and the town of Payson have taken precautions to prevent public exposure to the contamination. The Arizona Department of Health Services developed a "Statement of Risk" to identify risks associated with consumption of water from contaminated private wells in the area. Although most of the private wells were contaminated at levels below the drinking water standard established to protect human health (5 μ g/L), well owners were advised to not drink the water and that ADEQ would provide a temporary supply of bottled water until the owners could secure an alternative supply. Continuing tests indicate that the town of Payson municipal water supply has not been affected by the PCE. Tonto and Cherry Streets in Payson site — The Tonto and Cherry WQARF site in Payson is 400 feet west of the Beeline Highway and immediately north of Frontier Street. Tetrachloroethene (PCE) has been detected in three private drinking water and three ground water monitoring wells at the site. PCE concentrations in the private wells exceed the drinking water standard; therefore, bottled drinking water is being provided to these private well owners on a temporary basis. A fact sheet was mailed to all of the residents and businesses within the community involvement area and in December 2000, the Tonto and Cherry community advisory board (CAB) combined with the existing Payson PCE Community Advisory Board. In February 2001, ADEQ completed the installation of three ground water monitoring wells near Tonto and Cherry Streets. Due to ground water information obtained during drilling and sampling, ADEQ decided not to install extraction wells at Tonto and Cherry at this time. However, ADEQ will continue to conduct monthly ground water measurements and quarterly ground water quality sampling at the site. # **Watershed Partnerships** Verde Watershed Association -- The Verde Watershed Association was formally organized in 1993. The association is made up of concerned citizens from the community, users of the Verde watershed resources, and local, state and federal agencies. Members identified key issues, and are identifying sources of water and the real and potential threats of pollution to these waters. In addition, the association has initiated and or participated in programs to remedy these concerns. It is important to understand that this is a locally led effort with the role of federal and state governments being that of administrative assistance and technical support. The group meets monthly in Cottonwood, Arizona. The Verde Watershed Association publishes the monthly newsletter *Verde Currents* (formerly *Confluence*) which is available on its website. The association has developed a Watershed Restoration Action Strategy which is also available on their website: http://www.vwa.southwest-water.org Oak Creek Task Force – The Oak Creek Task Force is an organization of agencies and concerned citizens. Agencies actively involved in the Oak Creek Task force are: Arizona State Parks, US Forest Service, City of Sedona, Arizona Department of Water Resources, Northern Arizona University, Coconino County and Arizona Department of Environmental Quality. The group is actively involved in grant projects and public outreach to maintain and protect the Unique Water status of the beautiful and very popular Oak Creek Canyon. The Task Force has a draft Watershed-based Plan targeted to be finalized in fall of 2001. Information about meetings can be obtained from Co-chairmen: Barry Allan, (602) 953-1291 and Morgan Stine, (520) 282-1101. Verde River Alliance – This citizen initiative advocacy group is in its formative stages following workshops developed with the assistance of the Nature Conservancy. As of this writing, the group has a newly elected steering committee of six members and draft mission statement and objectives. Information about this group's activities can be obtained at the following e-mail address vrca@verdenet.com. # REFERENCES - ADEQ. 1994a. Biological sampling protocols: reference site selection and sampling methods. Prepared by R. D. Meyerhoff and P. H. Spindler. Hydrologic Support and Assessment Section. Phoenix 23 pp. - ADEQ. 1994b. Arizona priority pollutant sampling program 1993 report. EQR 94-3. Prepared by Sam Rector. Hydrologic Support and Assessment Section. Phoenix. 29 pp. - ADEQ. 1995a. Fixed station network procedures manual for monitoring surface water quality. Prepared by the Hydrologic Support and Assessment Section. Phoenix. 266 pp. - ADEQ. 1995c. Upper Tonto Creek intensive survey. Prepared by R. Scott Williams in the Hydrologic Support and Assessment Section. Open File Report 95-3. Phoenix. 19 pp. - ADEQ. 1996a. Using ecoregions for explaining macroinvertebrate community distribution among reference stream sites in Arizona, 1992. Prepared by Patrice Spindler, Biocriteria Development Program in the Hydrologic Support and Assessment Section. Phoenix, 41 pp. plus appendices. - ADEQ. 1996b. Phase I diagnostic/feasibility study of Rainbow Lake, Arizona. EQR 96-13. Prepared by the Clean Lakes Program in the Hydrologic Support and Assessment Section. Phoenix. 170 pp. - ADEQ. 1996c. Christopher Creek intensive survey phase II. Prepared by R Scott Williams in the Hydrologic Support and Assessment Section. Open File Report 96-22. Phoenix. 25 pp. - ADEQ. 1996d. Groundwater quality study for Casa Grande area, Arizona. Prepared by Robert Wallin in the Hydrologic Support and Assessment Section. Phoenix. 20 pp. - ADEQ. 1996e. Fixed station network procedures manual for surface water quality monitoring. Hydrologic Support and Assessment Section. TM-96-1. Phoenix. - ADEQ. 1997a. Arizona priority pollutant sampling program 1994 report. OFR 97-14. Prepared by Sam Rector in the Hydrologic Support and Assessment Section. Phoenix. 44 pp. - ADEQ. 1997b. Arizona priority pollutant sampling program 1995 report. OFR 97-18. Prepared by Sam Rector in the Hydrologic Support and Assessment Section. Phoenix. 11 pp. - ADEQ. 1997c. The impacts of septic systems on water quality of shallow perched aquifers: a case study of Fort Valley, Arizona. OFR 97-7. Prepared by Douglas Towne, Wang Yu, and Steve Emrick in the Hydrologic Support and Assessment Section. Phoenix. 70 pp. - ADEQ. 1997d. Prescott mining project final report. Vol 1. Prepared by Andrew Cajero-Travers in the Hydrologic Support and Assessment Section. Phoenix. 60 pp. - ADEQ. 1997e. Regrowth of fecal coliforms in swim areas of Lake Havasu, Arizona. Prepared by the Hydrologic Support and Assessment Section in cooperation with ADHS by Peter Hyde, Donald Johnstone, Don Reese, and Don Frey. Phoenix, Arizona. 262 pp. - ADEQ. 1997f. Cibola ground water quality study, Arizona. Prepared by Andrew Cajero-Travers in the Hydrologic Support and Assessment Section. Phoenix. 23 pp. - ADEQ. 1998a. Arizona's water quality assessment 1998. Volumes I and II. EQR 98-14. Prepared by the Hydrologic Support and Assessment Section. Phoenix. 260 pp. - ADEQ. 1998b. Arizona's 1998 water quality limited waters list (Arizona's 303(d) list). Prepared by the Hydrologic Support and Assessment Section. EQR-98-8. Phoenix. 46 pp. - ADEQ. 1998c. Ambient ground water quality of the Yuma Basin, Arizona, 1995. Prepared by Douglas C. Towne and Wang K. Yu in the Hydrologic Support and Assessment Section. ADEQ Open File Report 98-07. Phoenix, Arizona. 121 pp. - ADEQ. 1999a. Ambient ground water quality of the Virgin River Basin, Arizona: a 1997 baseline study. ADEQ Open File Report 99-04. Prepared by Douglas C. Towne in the Hydrologic Support and Assessment Section. Phoenix. 98 pp. - ADEQ. 1999b. Total maximum daily loads (TMDLs) for total phosphorus and total nitrogen in the Oak Creek basin, Arizona (including Munds Creek). Prepared by Robert Scalamera in the Hydrologic Support and Assessment Section. Phoenix. 112 pp. - ADEQ. 1999c. Pathogen TMDL -- Slide Rock State Park -- Oak Creek Canyon, Arizona. Phoenix. Prepared by Susan Fitch in the Hydrologic Support and Assessment Section. Phoenix. 23 pp. - ADEQ. 1999d. A fish consumption advisory investigation for the Middle Gila River; patterns and trends. Prepared by Sam Rector in the Hydrologic Support and Assessment Section. Phoenix Arizona. 10 pp. - ADEQ. 1999e. Ambient groundwater quality of the Prescott Active Management Area: an ADEQ 1997-1998 baseline study. Prepared by Douglas Towne in the Hydrologic Support and Assessment Section. Phoenix 25 pp. - ADEQ. 2000a. The status of water quality in Arizona Clean Water Act Section 305(b) Report 2000. Prepared by the Hydrologic Support and Assessment Section. Phoenix. 264 pp. plus appendices. - ADEQ. 2000b. Nutrioso Creek TMDL for turbidity. Prepared by Shad Bowman in the Hydrologic Support and Assessment Section. Phoenix. 16 pp. - ADEQ. 2001a. Macroinvertebrate community distribution among reference sites in Arizona: 1992-94. Prepared by the Biocriteria Program in the Hydrologic Support and Assessment Section. Open File Report 00-05. Phoenix. 18 pp. plus appendices. - ADEQ. 2001b. Biocriteria Program quality assurance program plan (QAPrP). Prepared by the Hydrologic Support and Assessment Section. Phoenix. 35 pp. - ADEQ. 2001c draft. Narrative toxicity standard implementation guidelines for Arizona. Prepared by the Hydrologic Support and Assessment Section. Phoenix. 9 pp. - ADEQ. 2001d. Ambient ground water quality in the Sacramento
Valley Basin study, Arizona 1999. Prepared by Douglas C. Towne and Maureen C. Freark in the Hydrologic Support and Assessment Section. ADEQ Open File Report 01-04. Phoenix, Arizona. 79 pp. - ADEQ 2001. Paria River Total Maximum Daily Load case study for turbidity and beryllium Arizona. Prepared by Sara Konrad and Jalyn Cummings in the Hydrologic Support and Assessment Section. Phoenix. 14 pp. - ADHS. 1991. Risk assessment for recreational usage of the Painted Rocks Borrow Pit Lake at Gila Bend, Arizona. Prepared for ADEQ. Phoenix. 35 pp. - ADWR. 1994. Arizona water resources assessment volumes I and II inventory and analysis and hydrologic summary. Phoenix. 516 pp. - ADWR. 2000. Arizona Water Protection Fund Commission annual report. Status of Water Protection Fund Grants 1999-2000. Phoenix, 55 pp. - AGFD. 1993. Statewide riparian inventory and mapping project. Phoenix. 138 pp. - AGFD. 1997a. Remote sensing mapping of Arizona Intermittent stream riparian areas. Technical report 112. Nongame and Endangered Wildlife Program. Phoenix. 58 pp. - AGFD. 1997b. Statewide riparian inventory and mapping project: methodology and updated accuracy assessments for perennial waters. Technical report 111. Nongame and Endangered Wildlife Program. Phoenix. 73 pp. - AGFD. 1997c. Statewide riparian inventory and mapping project Executive summary of nongame technical reports 111 and 112. Nongame and Endangered Wildlife Program. Phoenix. 10 pp. - Andrews, B.J., K.A. King, and D.L. Baker. 1997. Environmental contaminants in fish and wildlife of Havasu national Wildlife Refuge, Arizona. - USFWS. AZ Ecological Services Field Office. Phoenix. 65 pp. - Andrews, Brenda, and Kirke King. 1997. Environmental contaminants in sediment and fish of Mineral Creek and the middle Gila River, Arizona. USFWS. Phoenix. 18 pp. - Andrews, Brenda, Kirke King, and Denise Baker. 1995. Radionuclides and trace elements in fish and wildlife of the Puerco and Little Colorado rivers, Arizona. USFWS. Phoenix. 20 pp. - Aquatic Consulting and Testing, Inc. 2001. Lake management manual for City of Tucson Parks and Recreation Department. Contract number 001317. Develop maintenance plan for three urban fishing lakes. Tempe, Arizona. 190 pp, plus appendices. - Baker, Larry A. 1994. Sources and fate of arsenic in the Verde and Salt Rivers, Arizona. Presented at the Water Environment Federation Meeting October 17, 1994, Chicago. 9 pp. - Baker, Larry and Leslie Farnsworth. 1995. Feasibility of management options to improve water quality in Rainbow Lake. Arizona State University, Department of Civil and Environmental Engineering. Prepared for ADEQ, Clean Lakes Program. Tempe. 53 pp. - Beaulieu, K.M., J.P. Capesius, and J.B. Gebler. 2000. Physical habitat and geomorphic data for selected river reaches in central Arizona basins, 1995-98. NAWQA Program. Open File Report 00-90. Tucson. 107 pp. - BLM. 1993. Riparian area management -- process for assessing proper functioning condition. U.S. Department of Interior, Bureau of Land Management. Technical Report 1737-9. Denver. 51 pp. - BLM. 1997. Suspended sediment monitoring project, San Simon Watershed, Southeast Arizona, 1983-1995. Prepared by Delbert Molitor, BLM Safford Field Office. 71 pp. - BLM. 1997. Riparian area management grazing management for riparian and wetland areas. BLM 1737-14 1997. Washington, D.C. 35 pp. - BLM. 1999. Riparian area management -- process for assessing proper functioning condition for lentic riparian-wetland areas. U.S. Department of Interior, Bureau of Land Management. Technical - Report 1737-16. Denver. 37 pp. - BLM. 1998. Riparian area management -- process for assessing proper functioning condition for lotic riparian-wetland areas. U.S. Department of Interior, Bureau of Land Management. Technical Report 1737-15. Denver. 40 pp. - BLM and USFS. 2000. Management for enhancement of riparian and wetland areas of Western United States. BLM 1737-18; USFS GTR-54 CD. Washington, D.C. 50 pp. - Brezonik, Patrick L. 1986. "Trophic state indices: rationale for multivariate approaches" in Lake and Reservoir Management. USEPA Office of Water 440-5-84-001. pp 441-445. - Capesius, Joseph P. and Ted W. Lehman. Determination of channel change for selected streams, Maricopa County, Arizona. USGS water resources investigation report 01-4209. Prepared in cooperation with the Maricopa County Flood Control District. Tucson. 63 pp. - Coes, Alissa, D.J. Gellenbeck, Douglas C. Towne, and Maureen C. Freark. 2000. Ground water quality in the Upper Santa Cruz Basin, Arizona, 1998. USGS Water Resources Investigations Report 00-4117. In cooperation with ADEQ. Tucson, AZ. 55 pp. - Coes, Alissa, D.J. Gellenbeck, and Douglas C. Towne. 1999. Ground-water quality in the Sierra Vista Subbasin, Arizona 1996-97. USGS Water Resources Investigations Report 99-4056. In cooperation with ADEQ. Tucson, AZ. 50 pp. - Compton, A., Faust Jr., R., Salt, D., Blinn, D. In press. Groundwater arsenic in the Verde Valley in Central Arizona. *Applied Geochemistry*. Tucson. 10 pp. - Cordy, Gail and Herman Bower. 1999. Where do the salts go? The potential effects and management of salt accumulation in south-central Arizona. USGS NAWQA Program in cooperation with the U.S. Water Conservation Laboratory. Fact Sheet 170-98. Tucson. 4 pp. - Cordy, Gail E., D.J. Gellenbeck, Joseph B. Gebler, David W. Anning, Allissa L. Coes, R. J. Edmonds, Julie A.H. Rees, and H.W. Sanger. 2000. Water quality in central Arizona basins -- Arizona, 1995-98. USGS Circular - 1213. National Water Quality Assessment Program. Tucson.38 pp. - Cordy, G.E., J.A. Rees, R.J. Edmonds, J.G. Gebler, Laurie Wirt, D.J. Gellenbeck, and D.W. Anning. 1998. Water quality assessment of the central Arizona basins, Arizona and Northern Mexico environmental setting and overview of water quality. NAWQA Program. Water Resources Investigations Report 98-4097. Tucson. 72 pp. - Dahl, Thomas E. 2000. Status and trends of wetlands in the conterminous United States 1986-1997. U.S. Department of Interior, U.S. Fish and Wildlife Service, Branch of Habitat Assessment. Washington, D.C. 82 pp. - Earth Technology Corporation, The. 1993. Lower/middle Gila River study and Painted Rocks Lake phase-1 diagnostic feasibility study. Maricopa County, Arizona. Prepared for ADEQ. Phoenix. - Engberg, Richard A. 1999. "Selenium budgets for Lake Powell and the Upper Colorado River Basin." *Journal of the Am. Water Resources Assoc.* Vol 35, number 4, August 1999. pp 771-786. - Engineering-Science, Inc. 1994. Analysis of water quality functions of riparian vegetation. Prepared for ADEQ. Contract number 343280S25. Chandler. 235 pp. - Estrada, K.D. and O.E. Maughan. 1999. Reproductive impacts of elevated selenium levels. Arizona Cooperative Fish and Wildlife Research Unit, University of Arizona. A final report prepared for the USFWS, Ecological Services Office. Phoenix. 21 pp. - Federal Interagency Stream Restoration Working Group. 2000 revision. Stream corridor restoration principles, processes, and practices. GPO Item Number 0120-A; SuDocs number A 57.6/2:EN 3/PT.653. ISBN-0-934213-59-5 Washington, D.C. 574 pp. - Flynn, M.E., R.J. Hart, G.R. Marsolf, and C.J. Bowser. 2001. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon Dam and Lees Ferry, northeastern Arizona, 1998-1999. USGS open-file report 01-222. Prepared in cooperation with the Grand Canyon Monitoring and Research Center. Tucson. 13 pp. - Gallenbeck, D.J. and Alissa L. Coes. 1999. Ground water quality in alluvial basins that have minimal urban development, south-central Arizona. USGS Water Resources Investigation Report 99-4005. National Water Quality Assessment Program. Tucson. 27 pp. - Gebler, Joseph B. 1998. Water quality of selected effluent dependent stream reaches in Southern Arizona as indicated by concentrations of periphytic chloophyll a and aquatic invertebrate communities. USGS Water Resources Investigation Report 98-4199. National Water Quality Assessment Program Tucson. 12 pp. - Gebler, J.B. 2000. Organochlorine compounds in streambed sediment and in biological tissue from streams and their relations to land use, central Arizona. USGS National Water Quality Assessment Program. Tucson. 21 pp. - Gerritsen, Jeroen and Erik W. Leppo. 1998. Development and testing of a biological index for warmwater streams in Arizona. Tetra Tech, Inc. Prepared for ADEQ's Biocriteria Development Program. Phoenix. 29 pp. plus appendices. - Gibson, George (EPA), Robert Carlson (Kent State Univ.), Johnathan Simpson (Tetra Tech), Eric Smeltzer (Vermont Dept of Env. Cons.), Jeroen Gerritson (Tetra Tech), Steven Chapra (Univ. of CO), Steven Heiskary (Minn. Pollution Control), Jack Jones (Univ. of Missouri), and Robert Kennedy (US Army Corps of Eng.). 2000. Nutrient criteria technical guidance manual Lakes and reservoirs. EPA Office of Water and Office of Science and Technology. EPA-822-800-001. Washington, D.C. 155 pp. plus appendices. - Gilliom, Robert J., William M. Alley, and Martin E. Gurtz. 1995. Design of the national water quality assessment program: occurrence and distribution of water quality conditions. USGS circular 1112. Sacramento. 33 pp. - Graf, William L. and Kris Randall. 1998. A guidance document for monitoring and assessing the physical integrity of Arizona's streams. Department of Geography, ASU in cooperation with ADEQ. ADEQ document number TB98-2. Phoenix. 114 pp. - Harrelson, Cheryl C., C.L. Rawlins, and John P. Potyondy. 1994. Stream channel reference sites: An illustrated guide to field techniques. U.S. Forest Service, Rocky Mountain Forest and Range Experiment Station. General Technical Report RM-245. Fort Collins - Hart, Robert J. and Kent M. Sherman. 1996. Physical and chemical characteristics of Lake Powell at the forebay and outflows of Glen Canyon Dam, northeastern Arizona, 1990-91. USGS Water Resources Investigation Report 96-4016. Prepared in
cooperation with the Bureau of Reclamation. Tucson. 78 pp. - Holdren, G. Chris, James F. LaBounty, Andrew Montano, and Michael J. Horn. 1998 Limnological investigations of Boulder Basin, Lake Mead, Nevada Arizona (3rd quarter, 1998). Technical Memorandum # 8220-99-4. US Bureau of Reclamation, Technical Service Center, Denver, CO. 18 pp. - Kepner, William. 1987. Organochlorine contaminant investigation of the lower Gila River, Arizona. Written for the USFWS. Phoenix. 12 pp. - King, Kirke A., Anthony L. Velasco, Jackie Record, and Roland L. Kearns. 2001. Contaminants in bats roosting in abandoned mines at Imperial National Wildlife Refuge, Arizona, 1998-1999. USFWS Region 2 Contaminants Program. Phoenix. 35 pp. - King, Kirke A., Anthony L. Velasco, Jaqueline Garcia-Hernandez, Brenda J. Zaun, Jackie Record, and Julie Wesley. 2000. Contaminants in potential prey of the Yuma Clapper Rail: Arizona and California, USA, and Sonora and Baja, Mexico, 1998-1999. USFWS Region 2 Contaminants Program. Phoenix. 27 pp. - King, Kirke A., Brenda J. Zaun, and Anthony L. Velasco. 1999. Contaminants as a limiting factor of fish and wildlife populations in the Santa Cruz River, Arizona. USFWS. 57 pp. - King, Kirke A. and Mike Martinez. 1998. Metals in fish collected from Aravaipa Creek, Arizona, October 1997. USFWS Region 2 Contaminant Program. Phoenix. 7 pp. - King, Kirke A., Brenda J. Andrews, Cynthia T. Martinez, and William G. Kepner. 1997. Environmental contaminants in fish and wildlife of the lower Gila River, Arizona. USFWS Region 2 Contaminant Program. - Phoenix. 71 pp. - King, Kirke A. and Brenda J. Andrews. 1997. Environmental contaminants in ducks collected from wastewater treatment plant ponds, Nogales, Arizona 1996. USFWS Region 2 Contaminant Program Phoenix. 12 pp. - King, Kirke A., C.T. Martinez, and P.C. Rosen. 1996. Contaminants in Sonoran mud turtles from Quitobaquito Springs, Organ Pipe Cactus national monument, Arizona. USFWS Region 2 Contaminant Program. Phoenix. 11 pp. - King, Kirke A, Denise L. Baker, William G. Kepner, and C.T. Martinez. 1993. Contaminants in sediment and fish from national wildlife refuges on the Colorado River, Arizona. USFWS Region 2. Phoenix, 24 pp. - King, Kirke A. and Denise L. Baker. 1995a. Contaminants in fish and wildlife of the middle Gila River, Arizona. USFWS. Phoenix. 17 pp. - King, Kirke A. and Denise L. Baker. 1995b. Contaminants in potential Aplomado falcon prey from proposed reintroduction sites in Arizona. USFWS. Phoenix. 22 pp. - Larson, S.J., P.D. Capel, and M.S. Majewski. 1997. Pesticides in surface waters. Current understanding of distribution and major influences. USGS Fact Sheet FS-039-97. Based on a book by the same name (Ann Arbor Press) Sacramento. 4 pp. - Leake, S.A., A.D. Konieczki, and J.A.H. Rees. 2000. Ground water resources for the future- Desert Basins of the Southwest. USGS Fact Sheet 086-00. Tucson. 4 pp. - Leopold, L. B. 1994. A view of the river. Cambridge, Mass.: Harvard University Press, 298 pp. - Leppo, Erik W., and Jeroen Gerritsen. 2000. Development and testing of a biological index for coldwater streams of Arizona. Tetra Tech, Inc. Prepared for ADEQ's Biocriteria Development Program. Phoenix. 16 pp. plus appendices. - Littin, G.R., Margot Truini, H.A. Pierce, and B.M. Baum. 2000. Occurrence and quality of surface water and ground water within the Yavapai- - Prescott Indian Reservation, Central Arizona, 1994-98. USGS Water Resources Investigation Report 00-4144. Prepared in cooperation with the Yavapai-Prescott Indian Tribe. Tucson. 99 pp. - Lopes, Thomas J. and John P. Hoffman. 1997. Geochemical analysis of ground water ages, recharge rates and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona. Prepared by USGS in cooperation with the Bureau of Indian Affairs and the Navajo Dept. of Water Resources Management. Water Resources Investigation Report 96-4190. Tucson. 42 pp. - McCammon, Bruce, John Rector, and Karl Gebhardt. 1998. A framework for analyzing the hydrologic conditions of watersheds. US Forest Service and US Bureau of Land Management guidance manual. BLM technical note 405. Denver, Colorado. 37 pp. - Majewski, M.S. and P.D. Capel. 1995. Pesticides in the atmosphere. Current understanding of distribution and major influences. USGS fact sheet FS-152-95. From a book by the same name (Ann Arbor Press, Inc.). Sacramento. 4 pp. - Marzolf, Richard, Robert J. Hart, and Doyle W. Stephens. 1998. Depth profiles of temperature, specific conductance, and oxygen concentration in Lake Powell, Arizona-Utah, 1992-95. USGS open-file report 97-835. Prepared in cooperation with Bureau of Reclamation. Tucson. 119 pp. - Medina, A L. 2001. A preliminary analysis of riparian habitat conditions of the upper Verde River. Prepared for Rocky Mt. Experiment Station, USFS-USDA. Flagstaff. 9 pp. - Medina, A L. 2001. A preliminary view of water quality conditions of the upper Verde River. Prepared for Rocky Mt. Experiment Station, USFS-USDA. Flagstaff. 9 pp. - Moody, Thomas 0. and Wilbert Odem. 1999. Regional relationships for bankfull stage in natural channels of Central and Southern Arizona. Northern Arizona University, College of Engineering and Technology. Flagstaff. 37 pp. - Munill, Carrie, Mark Anderson, Lewis Boobar. 2001. 2000 beach waste survey. Division of Resource Management, Glen Canyon National - Recreation Area. Page, AZ. 16 pp. - National Park Service. 1995. Bacteria water quality data analysis and interpretation – Glen Canyon National Recreation Area. Technical Report NPS/NRWRD/NRTR-95/46. Prepared by Barry Long and Rebecca Smith. Fort Collins, CO. pp. 147. - Neary, D G. and M B Baker, Jr. 2001. An overview of Rocky Mountain Research Station Verde River Watershed research over the past five decades. Prepared for Rocky Mt. Experiment Station, USFS-USDA. Flagstaff. 4 pp. - Neary, D G and J N Rinne. 2001. Base flow trends and native fish in the upper Verde River. Prepared for Rocky Mt. Experiment Station, USFS-USDA. Flagstaff. 6 pp. - Nevada Division of Environmental Protection. 1998. Las Vegas Wash Lake Mead water quality standards rational. Las Vegas, Nevada. 158 pp. - Nolan, Bernard T., Barbara C. Ruddy, Kerie J. Hitt, and Dennis R. Helsel. 1999. A national look at nitrate contamination of groundwater. USGS. Reprinted from *Conditioning and Purification Magazine* 1999. - Nowell, L.H., P.D. Capel, and P.D. Dileanis. 2000. Pesticides in stream sediment and aquatic biota. Current understanding and distribution and major influences. USGS Fact Sheet 092-00. Based on a book by the same name (Ann Arbor Press, Inc.). Sacramento. 4 pp. - Odem, Wilbert I., Scott Blossom, Joshua B. Gilman, Sean P. Welch. 2001. (Draft) Regional relationships between hydrologic and hydraulic parameters in the state of Arizona. 6 pp. and appendices. - Odem, Wilbert I, Scott Blossom, Joseph Loverich, Barbara Orchard, and Nathan Wallace. 2001. (Draft) Bank erosion at ADEQ biocriteria reference sites in the Verde River and San Pedro River surface water basins. Under contract with ADEQ. Northern Arizona University. Flagstaff. 17 pp and appendices. - Odem, Wilbert I., Scott Blossom, Joseph Loverich, Barbara Orchard, and Nathan Wallace. 2001. (Draft) Evaluation of the BEHI bank erosion prediction model in the Verde River and San Pedro River surface water basins. Under contract with ADEQ. Northern Arizona University. #### Flagstaff. 40 pp. and appendices. - Philips Consulting. 2001. Yuma east wetlands restoration. Drafted April 30, 2001. Prepared for the Riverfront Development Office, Yuma. Arizona. 146 pp. - Prieto, F.G. 1998. Selenium and water quality in three wetland types along the lower Colorado River – Imperial National Wildlife Refuge. Masters of Science thesis, School of Renewable Natural Resources, UA. Tucson. 109 pp. - Rosgen, Dave. 1996. Applied river morphology. Wildland Hydrology, Pagosa Springs Colorado. Printed by Media Company, Minneapolis. 352 pp. - Shafroth, Partick Barnes. 1999. Downstream effects of dams on riparian vegetation (*Tamarix rimosissima*): Bill Williams River, Arizona. In cooperation with Arizona State University. Tempe, AZ. 156 pp. - Tadayon, S., K.A. King, B.J. Andrews, and W.P. Roberts. 1997. Field screening of water quality, bottom sediment, and biota associated with irrigation drain water in the Yuma Valley, Arizona, 1995. USGS and USFWS. USGS Water-Resources Investigations Report 97-4236. Tucson. 42 pp. - Tetra Tech, Inc. 1999a. Total maximum daily load and implementation plan for mercury Arivaca Lake, Arizona. Prepared for ADEQ and EPA. Phoenix. 72 pp. - Tetra Tech, Inc. 1999b. Total maximum daily load and implementation plan for mercury Pena Blanca Lake, Arizona. Prepared for ADEQ and EPA. Phoenix. 69 pp. - Tetra Tech, Inc. 2000a. Rainbow Lake: Total maximum daily load study. Prepared for ADEQ. Phoenix. 93 pp. - Tetra Tech, Inc. 2000b. Luna Lake Total Maximum Daily Load. Prepared for ADEQ. Phoenix. 99 pp. - Tetra Tech, Inc. 2000c. Verde River assimilative capacity data summary report. Prepared for ADEQ. Phoenix. 71 pp. - US Mexico Border Field Coordinating Committee. 1997. Water resources - issues in the Mexican Highlands subarea. U.S. Department of Interior Fact Sheet. Washington, DC. 8 pp. - US Army Corps of Engineers. 2000. Tres Rios, Arizona feasibility study. Los Angeles District South Pacific Division. - US Department of the Interior. 1999. Quality of water Colorado River Basin. Progress Report 19. Prepared by Bureau of Reclamation. Utah. 196 pp. - USEPA. 1998. Lake and reservoir bioassessment and biocriteria Technical guidance document. Office of Water. EPA 841-B-98-007. Washington, D.C. 132 pp. plus appendices. - USEPA. 1999a. Guidance for assessing chemical contaminant data for use in fish advisories. Volume 1-- Fish sampling and analysis. Third edition. EPA Office of Water. EPA- 823-B-99-007. Washington D.C. 262 pp. plus appendices. - USEPA. 1999b. Guidance for assessing chemical contaminant data for use in fish advisories.
Volume 2 -- Risk assessment and fish consumption limits. Third edition. EPA Office of Water. EPA- 823-B-99-008. Washington D.C. 260 pp. plus appendices. - USEPA. 1999c Rapid bioassessment protocols for use in wadable streams and rivers; periphyton, benthic macroinvertebrates, and fish. Second edition. EPA Office of Water. EPA-841-B-99-002. Washington D.C. 326 pp. - USEPA. 1999d. Protocol for developing sediment TMDLs. EPA 841-B-99-004. Office of Water (4503F). Washington, D.C. 132 pp. - USEPA. 2000a. Stressor identification guidance document. Office of Water and Office of Research and Development. Washington, D.C. 154 pp. plus appendices. - USEPA. 2000b. Guidelines for preparation of the comprehensive state water quality assessments (305(b) reports) and electronic updates: report contents and supplement. Office of Water. EPA-841-B-97-002A and -002B. Washington D.C. 500 pp. - USEPA. 2000c. The guidelines establishing test procedures for the analysis of #### pollutants. Code of Federal Register 136, July 1, 2001 - USEPA. 2001. "2002 integrated Water Quality Monitoring and Assessment Report Guidance" issued November 2001 by Robert H. Wayland III, Director Office of Wetlands, Oceans, and Watersheds to EPA regional offices, states, and tribal authorities. - USFS. 2001. Watershed condition assessment for select Verde River 5th code watersheds. Prescott. 144 pp. - Villegas, S.V. 1997. Dynamics of selenium in Cibola Lake, Arizona. PhD dissertation, Cooperative Fish and Wildlife Research Unit, UA. Tucson. 107 pp. - Wahl, C.R., S.R. Boe, J.A. Wennerlund, R.A. Winstead, L.J. Allison, and D.M. Kubly. 1997. Remote sensing mapping of Arizona intermittent stream riparian areas. Arizona Game and Fish Department, Nongame and Endangered Wildlife Program Technical Report 112. Phoenix. 58 pp. - Welch, Alan H., Sharon A. Watkins, Dennis r. Helsel, and Michael J. Focazio. 2000. Arsenic in ground water resources of the United States. USGS Fact Sheet 063-00. Denver. 4 pp. - Wester Water Policy Review Advisory Commission. 1998. Water in the west: challenge for the next century. Final Report by this Congressional appointed commission. National Technical Information Service Springfield, Virginia. 293 pp. plus appendices. - Westerhoff, Paul and Larry Baker. 2001. Role of Verde River reservoirs on water quality: from arsenic to algae. ASU. Verde River Symposium Proceedings. 1 pp. - Winter, Thomas C., Judson W. Harvey, O. Lehn Franke, and William M. Alley. 1998. Ground water and surface water – a single resource. USGS Circular 1139. Denver. 79 pp.